
Sun Microsystems, Inc.
www.sun.com

See https://jsp-spec-public.dev.java.net to comment on and discuss this specification

Expression Language Specification
Version 2.1

A component of the JavaServer™ Pages Specification
Version 2.1

Kin-Man Chung, Pierre Delisle, Mark Roth, editors

Proposed Final Draft

August 2005 (Proposed Final Draft)



Specification: JSR-245: JavaServer Pages 2.1 ("Specification") 
Status: Pre-FCS, Proposed Final Draft
Release: August 16, 2005

Copyright 2005 Sun Microsystems, Inc. 
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved. 

NOTICE: The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, 
foreign patents, or pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any 
form by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the 
Specification and the information described therein will be governed by the terms and conditions of this Agreement. 

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-transferable, limited license (without 
the right to sublicense) under Sun's intellectual property rights to review the Specification only for the purposes of evaluation. This license 
includes the right to discuss the Specification (including the right to provide limited excerpts of text to the extent relevant to the point[s] under 
discussion) with other licensees (under this or a substantially similar version of this Agreement) of the Specification. Other than this limited 
license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual property, and the Specification may only 
be used in accordance with the license terms set forth herein. This license will expire on the earlier of: (i) two (2) years from the date of Release 
listed above; (ii) the date on which the final version of the Specification is publicly released; or (iii) the date on which the Java Specification 
Request (JSR) to which the Specification corresponds is withdrawn. In addition, this license will terminate immediately without notice from 
Sun if you fail to comply with any provision of this license. Upon termination, you must cease use of or destroy the Specification.

TRADEMARKS: No right, title, or interest in or to any trademarks, service marks, or trade names of Sun, Sun's licensors, Specification Lead 
or the Specification Lead's licensors is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2SE, J2EE, J2ME, Java Compatible, the 
Java Compatible Logo, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other 
countries.

DISCLAIMER OF WARRANTIES: THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS 
OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, 
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY 
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY 
PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement 
any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE 
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF 
THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE 
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will be governed by the 
then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY: TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR 
ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, 
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, 
ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF 
SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will hold Sun (and its licensors) harmless from any claims based on your use of the Specification for any purposes other than the limited 
right of evaluation as described above, and from any claims that later versions or releases of any Specification furnished to you are incompatible 
with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND: If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime 
contractor or subcontractor (at any tier), then the Government's rights in the Specification and accompanying documentation shall be only as 
set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and 
with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).



REPORT: You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation of the 
Specification ("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a 
non-proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with 
the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose 
related to the Specification and future versions, implementations, and test suites thereof.

GENERAL TERMS: Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. 
Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees 
to comply strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export 
or import as may be required after delivery to Licensee.

Neither party may assign or otherwise transfer any of its rights or obligations under this Agreement, without the prior written consent of the 
other party, except that Sun may assign this Agreement to an affiliated company.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written 
communications, proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote, 
order, acknowledgment, or other communication between the parties relating to its subject matter during the term of this Agreement. No 
modification to this Agreement will be binding, unless in writing and signed by an authorized representative of each party.





Contents

Preface ix

Historical Note ix

Related Documentation x

Typographical Conventions xi

Acknowledgments xi

Comments xi

1. Language Syntax and Semantics 1

1.1 Overview 1

1.1.1 EL in a nutshell 2

1.2 EL Expressions 2

1.2.1 Eval-expression 2

1.2.1.1 Eval-expressions as value expressions 3

1.2.1.2 Eval-expressions as method expressions 4

1.2.2 Literal-expression 5

1.2.3 Composite expressions 6

1.2.4 Syntax restrictions 7

1.3 Literals 7

1.4 Errors, Warnings, Default Values 7

1.5 Resolution of Model Objects and their Properties 8
v



1.6 Operators [] and . 8

1.7 Arithmetic Operators 9

1.7.1 Binary operators - A {+,-,*} B 10

1.7.2 Binary operator - A {/,div} B 10

1.7.3 Binary operator - A {%,mod} B 11

1.7.4 Unary minus operator - -A 11

1.8 Relational Operators 11

1.8.1 A {<,>,<=,>=,lt,gt,le,ge} B 12

1.8.2 A {==,!=,eq,ne} B 12

1.9 Logical Operators 13

1.9.1 Binary operator - A {&&,||,and,or} B 13

1.10 Empty Operator - empty A 13

1.11 Conditional Operator - A ? B : C 14

1.12 Parentheses 14

1.13 Operator Precedence 14

1.14 Reserved Words 15

1.15 Functions 15

1.16 Variables 16

1.17 Type Conversion 16

1.17.1 To Coerce a Value X to Type Y 16

1.17.2 Coerce A to Number type N 17

1.17.3 Coerce A to Character 18

1.17.4 Coerce A to Boolean 18

1.17.5 Coerce A to Any Other Type T 18

1.18 Collected Syntax 19

2. Java APIs 23

javax.el 25

ArrayELResolver 29

BeanELResolver 34
vi Expression Language Specification • August 2005 (Proposed Final Draft)



CompositeELResolver 39

ELContext 46

ELContextEvent 50

ELContextListener 52

ELException 53

ELResolver 55

Expression 61

ExpressionFactory 64

FunctionMapper 68

ListELResolver 70

MapELResolver 75

MethodExpression 80

MethodInfo 83

MethodNotFoundException 85

PropertyNotFoundException 87

PropertyNotWritableException 89

ResourceBundleELResolver 91

ValueExpression 95

VariableMapper 99

A. Changes 101

A.1 Changes between Public Review and Proposed Final Draft 101

A.2 Changes between Early Draft Release and Public Review 102
Contents vii



viii Expression Language Specification • August 2005 (Proposed Final Draft)



Preface

This is the Expression Language specification version 2.1, developed jointly by the 
JSR-245 (JSP 2.1) and JSR-252 (Faces 1.2) expert groups under the Java Community 
Process. See http://www.jcp.org. 

Historical Note
The EL was orginally inspired by both ECMAScript and the XPath expression 
languages. During its inception, the experts involved were very reluctant to design 
yet another expression language and tried to use each of these languages, but they 
fell short in different areas.

The JSP Standard Tag Library (JSTL) version 1.0 (based on JSP 1.2) was therefore 
first to introduce an Expression Language (EL) to make it easy for page authors to 
access and manipulate application data without having to master the complexity 
associated with programming languages such as Java and JavaScript.

Given its success, the EL was subsequently moved into the JSP specification (JSP 
2.0/JSTL 1.1), making it generally available within JSP pages (not just for attributes 
of JSTL tag libraries).

JavaServer Faces 1.0 defined a standard framework for building User Interface 
components, and was built on top of JSP 1.2 technology. Because JSP 1.2 technology 
did not have an integrated expression language and because the JSP 2.0 EL did not 
meet all of the needs of Faces, an EL variant was developed for Faces 1.0. The Faces 
expert group (EG) attempted to make the language as compatible with JSP 2.0 as 
possible but some differences were necessary. 
ix



It is obviously desirable to have a single, unified expression language that meets the 
needs of the various web-tier technologies. The Faces and JSP EGs therefore worked 
together on the specification of a unified expression language, defined in this 
document, and which takes effect for the JSP 2.1 and Faces 1.2 releases.

The JSP/JSTL/Faces expert groups also acknowledge that the Expression 
Language(EL) is useful beyond their own specifications. It is therefore desirable to 
eventually move the Expression Language into its own JSR to give it more visibility 
and guarantee its general applicability outside of the JSP specification.

It has not been possible to give the EL its own JSR at this time. However, as a first 
step, JSP 2.1 delivers 2 specification documents, one specific to the JSP technology, 
and one specific to the Expression Language (this document). This makes the intent 
clear that the Expression Language does not carry a dependency on the JSP 
specification and will make it easier in the future should the decision be made to 
move it into its own JSR.

Related Documentation
Implementors of the Expression Language and web developers may find the 
following documents worth consulting for additional information:.

JavaServer Pages (JSP) http://java.sun.com/products/jsp

JSP Standard Tag Library (JSTL) http://java.sun.com/products/jsp/jstl

JavaServer Faces (JSF) http://java.sun.com/j2ee/javaserverfaces

Java Servlet Technology http://java.sun.com/servlet

Java 2 Platform, Standard Edition http://java.sun.com/j2se

Java 2 Platform, Enterprise Edition http://java.sun.com/j2ee

JavaBeans http://java.sun.com/beans
x Expression Language Specification • August 2005 (Proposed Final Draft)



Typographical Conventions

Acknowledgments
This specification on the unified Expression Language is the joint work of the JSR-
245 (JavaServer Pages) and JSR-252 (JavaServer Faces) expert groups. We want to 
thank members of these two expert groups for their spirit of collaboration and 
excellent work on the unification of the Expression Language.

Special mention is due to Jacob Hookom and Adam Winer for their leadership role 
in helping solve the complex technical issues we were faced with in this unification 
work.

The editors also want to give special thanks to the individuals within the Java 
Enterprise Edition platform team at Sun Microsystems, and especially to Bill 
Shannon, Eduardo Pellegri-Llopart, Jim Driscoll, Karen Schaffer, Jan Luehe, Nick 
Rodin, Sheri Shen, Jean-Francois Arcand, Jennifer Ball, Tony Ng, Ed Burns, Jayashri 
Visvanathan, Roger Kitain, Ryan Lubke, Dhiru Pandey, Greg Murray, and Norbert 
Lindenberg.

Comments
We are interested in improving this specification and welcome your comments and 
suggestions. We have a java.net project with an issue tracker and a mailing list for 
comments and discussions about this specification:

https://jsp-spec-public.dev.java.net/

Font Style Uses

Italic Emphasis, definition of term.

Monospace
Syntax, code examples, attribute names, Java language types, 
API, enumerated attribute values.
Preface xi



xii Expression Language Specification • August 2005 (Proposed Final Draft)



CHAPTER 1

Language Syntax and Semantics

The syntax and semantics of the Expression Language (EL) are described in this 
chapter.

1.1 Overview
The EL is a simple language designed to meet the needs of the presentation layer in 
web applications. It features:

■ A simple syntax restricted to the evaluation of expressions

■ Variables and nested properties

■ Relational, logical, arithmetic, conditional, and empty operators

■ Functions implemented as static methods on Java classes

■ Lenient semantics where appropriate default values and type conversions are 
provided to minimize exposing errors to end users

as well as

■ A pluggable API for resolving variable references into Java objects and for 
resolving the properties applied to these Java objects

■ An API for deferred evaluation of expressions that refer to either values or 
methods on an object

■ Support for lvalue expressions (expressions a value can be assigned to)

These last three features are key additions to the JSP 2.0 EL resulting from the EL 
alignment work done in the JSP 2.1 and Faces 1.2 specifications.
1



1.1.1 EL in a nutshell
The syntax is quite simple. Model objects are accessed by name. A generalized [] 
operator can be used to access maps, lists, arrays of objects and properties of a 
JavaBeans object; the operator can be nested arbitrarily. The . operator can be used 
as a convenient shorthand for property access when the property name follows the 
conventions of Java identifiers, but the [] operator allows for more generalized 
access.

Relational comparisons are allowed using the standard Java relational operators. 
Comparisons may be made against other values, or against boolean (for equality 
comparisons only), string, integer, or floating point literals. Arithmetic operators can 
be used to compute integer and floating point values. Logical operators are 
available.

The EL features a flexible architecture where the resolution of model objects (and 
their associated properties), functions, and variables are all performed through a 
pluggable API, making the EL easily adaptable to various environments.

1.2 EL Expressions
An EL expression is specified either as an eval-expression, or as a literal-expression. The 
EL also supports composite expressions, where multiple EL expressions (eval-
expressions and literal-expressions) are grouped together.

An EL expression is parsed as either a value expression or a method expression. A value 
expression refers to a value, whereas a method expression refers to a method on an 
object. Once parsed, the expression can optionally be evaluated one or more times. 

Each type of expression (eval-expression, literal-expression, and composite 
expression) is described in its own section below.

1.2.1 Eval-expression
An eval-expression is formed by using the constructs ${expr} or #{expr}. Both 
constructs are parsed and evaluated in exactly the same way by the EL, even though 
they might carry different meanings in the technology that is using the EL. 

For instance, by convention the J2EE web tier specifications use the ${expr} 
construct for immediate evaluation and the #{expr} construct for deferred 
evaluation. This difference in delimiters points out the semantic differences between 
the two expression types in the J2EE web tier. Expressions delimited by "#{}" are said 
2 Expression Language Specification • August 2005 (Proposed Final Draft)



to use "deferred evaluation" because the expression is not evaluated until its value is 
needed by the system. Expressions delimited by "${}" are said to use "immediate 
evaluation" because the expression is compiled when the JSP page is compiled and it 
is executed when the JSP page is executed. More on this in Section 1.2.4, “Syntax 
restrictions”. 

Other technologies may choose to use the same convention. It is up to each 
technology to enforce its own restrictions on where each construct can be used.

Nested eval-expressions, such as ${item[${i}]}, are illegal. 

1.2.1.1 Eval-expressions as value expressions

When parsed as a value expression, an eval-expression can be evaluated as either an 
rvalue or an lvalue. If there were an assignment operator in the EL, an rvalue is an 
expression that would typically appear on the right side of the assignment operator. 
An lvalue would typically appear on the left side.

 For instance, all EL expressions in JSP 2.0 are evaluated by the JSP engine 
immediately when the page response is rendered. They all yield rvalues. 

In the following JSTL action

    <c:out value="${customer.name}"/>

the expression ${customer.name} is evaluated by the JSP engine and the returned 
value is fed to the tag handler and converted to the type associated with the 
attribute (String in this case).

Faces, on the other hand, supports a full UI component model that requires 
expressions to represent more than just rvalues. It needs expressions to represent 
references to data structures whose value could be assigned, as well as to represent 
methods that could be invoked.

For example, in the following Faces code sample:

<h:form>
    <h:inputText 
      id="email" 
      value="#{checkOutFormBean.email}"
      size="25" maxlength="125"
      validator="#{checkOutFormBean.validateEmail}"/>
</h:form>
Chapter 1 Language Syntax and Semantics 3



when the form is submitted, the "apply request values" phase of Faces evaluates the 
EL expression #{checkOutFormBean.email} as a reference to a data structure 
whose value is set with the input parameter it is associated with in the form. The 
result of the expression therefore represents a reference to a data structure, or an 
lvalue, the left hand side of an assignment operation.

When that same expression is evaluated during the rendering phase, it yields the 
specific value associated with the object (rvalue), just as would be the case with JSP.

The valid syntax for an lvalue is a subset of the valid syntax for an rvalue. In 
particular, an lvalue can only consist of either a single variable (e.g. ${name}) or a 
property resolution on some object, via the . or [] operator (e.g. 
${employee.name}). 

When parsing a value expression, an expected type is provided. In the case of an 
rvalue, the expected type is what the result of the expression evaluation is coerced 
to.  In the case of lvalues, the expected type is ignored and the provided value is 
coerced to the actual type of the property the expression points to, before that 
property is set. The EL type conversion rules are defined in Section 1.17, “Type 
Conversion”. A few sample eval-expressions are shown in FIGURE 1-1.

FIGURE 1-1 Sample eval-expressions

1.2.1.2 Eval-expressions as method expressions

In some cases, it is desirable for an EL expression to refer to a method instead of a 
model object.

For instance, in JSF, a component tag also has a set of attributes for referencing 
methods that can perform certain functions for the component associated with the 
tag. To support these types of expressions, the EL defines method expressions (EL 
class MethodExpression).

Expression Expected Type Result

${customer.name} String
Guy Lafleur
Expression evaluates to a String. No 
conversion necessary.

${book} String

Wonders of the World
Expression evaluates to a Book object 
(e.g. com.example.Book). Conversion 
rules result in the evaluation of 
book.toString(), which could for 
example yield the book title.
4 Expression Language Specification • August 2005 (Proposed Final Draft)



In the above example, the validator attribute uses an expression that is associated 
with type MethodExpression. Just as with ValueExpressions, the evaluation of 
the expression (calling the method) is deferred and can be processed by the 
underlying technology at the appropriate moment within its lifecycle.

A method expression shares the same syntax as an lvalue. That is, it can only consist 
of either a single variable (e.g. ${name}) or a property resolution on some object, via 
the . or [] operator (e.g. ${employee.name}). Information about the expected 
return type and parameter types is provided at the time the method is parsed.

A method expression is evaluated by invoking its referenced method or by 
retrieving information about the referenced method. Upon evaluation, the EL API 
verifies that the method conforms to the expected signature provided at parse time. 
There is therefore no coercion performed by method expressions. 

1.2.2 Literal-expression
A literal-expression does not use the ${expr} or #{expr} constructs, and simply 
evaluates to the text of the expression, of type String. Upon evaluation, an 
expected type of something other than String can be provided. Sample literal-
expressions are shown in FIGURE 1-2. 

FIGURE 1-2 Sample literal-expressions

To generate literal values that include the character sequence "${" or “#{“, the 
developer can choose to use a composite expression as shown here: 

${'${'}exprA}

#{'#{'}exprB}The resulting values would then be the strings ${exprA} and 
#{exprB}.

Alternatively, the escape characters \$ and \# can be used to escape what would 
otherwise be treated as an eval-expression. Given the literal-expressions:

\${exprA}

\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

Expression
Expected 

Type
Result

Aloha! String Aloha!

true Boolean Boolean.TRUE
Chapter 1 Language Syntax and Semantics 5



A literal-expression can be used anywhere a value expression can be used.  A literal-
expression can also be used as a method expression that returns a non-void return 
value. The standard EL coercion rules (see Section 1.17, “Type Conversion”) then 
apply if the return type of the method expression is not java.lang.String. 

1.2.3 Composite expressions
The EL also supports composite expressions, where multiple EL expressions are 
grouped together. With composite expressions, eval-expressions are evaluated from 
left to right, coerced to Strings (according to the EL type conversion rules), and 
concatenated with any intervening literal-expressions.

For example, the composite expression “${firstName} ${lastName}” is 
composed of three EL expressions: eval-expression “${firstName}”, literal-
expression “ “, and eval-expression “${lastName}”.

Once evaluated, the resulting String is then coerced to the expected type, 
according to the EL type conversion rules. A sample composite expression is shown 
in FIGURE 1-3.

FIGURE 1-3 Sample composite expression

It is illegal to mix ${} and #{} constructs in a composite expression.  This 
restriction is imposed to avoid ambiguities should a user think that using ${expr} 
or #{expr} dictates how an expression is evaluated. For instance, as was mentioned 
previously, the convention in the J2EE web tier specifications is for ${} to mean 
immediate evaluation and for #{} to mean deferred evaluation. This means that in 
EL expressions in the J2EE web tier, a developer cannot force immediate evaluation 
of some parts of a composite expression and deferred evaluation of other parts. This 
restriction may be lifted in future versions to allow for more advanced EL usage 
patterns.

A composite expression can be used anywhere an EL expression can be used except 
for when parsing a method expression. Only a single eval-expression can be used to 
parse a method expression.

Expression
Expected 

Type
Result

Welcome 
${customer.name} to 
our site

String

Welcome Guy Lafleur to our 
site
${customer.name} evaluates to a 
String which is then concatenated with the 
literal-expressions. No conversion 
necessary.
6 Expression Language Specification • August 2005 (Proposed Final Draft)



1.2.4 Syntax restrictions
While ${} and #{} eval-expressions are parsed and evaluated in exactly the same 
way by the EL, the underlying technology is free to impose restrictions on which 
syntax can be used according to where the expression appears.

For instance, in JSP 2.1, #{} expressions are only allowed for tag attributes that 
accept deferred expressions. #{expr} will generate an error if used anywhere else.

1.3 Literals
There are literals for boolean, integer, floating point, string, and null in an eval-
expression.

■ Boolean - true and false 
■ Integer - As defined by the IntegerLiteral construct in Section 1.18
■ Floating point - As defined by the FloatingPointLiteral construct in 

Section 1.18
■ String - With single and double quotes - " is escaped as \", ' is escaped as \', 

and \ is escaped as \\. Quotes only need to be escaped in a string value enclosed 
in the same type of quote

■ Null - null 

1.4 Errors, Warnings, Default Values
The Expression Language has been designed with the presentation layer of web 
applications in mind. In that usage, experience suggests that it is most important to 
be able to provide as good a presentation as possible, even when there are simple 
errors in the page. To meet this requirement, the EL does not provide warnings, just 
default values and errors. Default values are type-correct values that are assigned to 
a subexpression when there is some problem. An error is an exception thrown (to be 
handled by the environment where the EL is used). 
Chapter 1 Language Syntax and Semantics 7



1.5 Resolution of Model Objects and their 
Properties
A core concept in the EL is the evaluation of a model object name into an object, and 
the resolution of properties applied to objects in an expression (operators . and []). 

The EL API provides a generalized mechanism, an ELResolver, implemented by 
the underlying technology and which defines the rules that govern the resolution of 
model object names and their associated properties.

1.6 Operators [] and .
The EL follows ECMAScript in unifying the treatment of the . and [] operators.

expr-a.identifier-b is equivalent to expr-a["identifier-b"]; that is, the 
identifier identifier-b is used to construct a literal whose value is the identifier, 
and then the [] operator is used with that value. 

To evaluate expr-a[expr-b]:

■ Evaluate expr-a into value-a.

■ If value-a is null:

■ If expr-a[expr-b] is the last property being resolved:

■ If the expression is a value expression and 
ValueExpression.getValue(context) was called to initiate this 
expression evaluation, return null.

■ Otherwise, throw PropertyNotFoundException.
[trying to de-reference null for an lvalue]

■ Otherwise, return null.

■ Evaluate expr-b into value-b .

■ If value-b is null:

■ If expr-a[expr-b] is the last property being resolved:

■ If the expression is a value expression and 
ValueExpression.getValue(context) was called to initiate this 
expression evaluation, return null. 

■ Otherwise, throw PropertyNotFoundException.
[trying to de-reference null for an lvalue]
8 Expression Language Specification • August 2005 (Proposed Final Draft)



■ Otherwise, return null.

■ If the expression is a value expression:

■ If expr-a[expr-b] is the last property being resolved:

■ If ValueExpression.getValue(context) was called to initiate this 
expression evaluation, invoke elResolver.getValue(context, 
value-a, value-b).

■ If ValueExpression.getType(context) was called, invoke 
elResolver.getType(context, value-a, value-b).

■ If ValueExpression.isReadOnly(context) was called, invoke 
elResolver.isReadOnly(context, value-a, value-b).

■ If ValueExpression.setValue(context, val) was called, invoke 
elResolver.setValue(context, value-a, value-b, val).

■ Otherwise:

■ Invoke elResolver.getValue(value-a, value-b).

■ Otherwise, the expression is a method expression:

■ If expr-a[expr-b] is the last property being resolved:

■ Coerce value-b to String.

■ Find the method on object value-a with name value-b and with the set of 
expected parameter types provided at parse time. If the method does not 
exist, or the return type does not match the expected return type provided 
at parse time, throw MethodNotFoundException.

■ If MethodExpression.invoke(context, params) was called, invoke 
the found method with the parameters passed to the invoke method.

■ If MethodExpression.getMethodInfo(context) was called, construct 
and return a new MethodInfo object.

■ Otherwise:

■ Invoke elResolver.getValue(value-a, value-b).

1.7 Arithmetic Operators
Arithmetic is provided to act on integer (BigInteger and Long) and floating point 
(BigDecimal and Double) values. There are 5 operators:

■ Addition: + 

■ Substraction: - 

■ Multiplication: * 
Chapter 1 Language Syntax and Semantics 9



■ Division: / and div 

■ Remainder (modulo): % and mod 

The last two operators are available in both syntaxes to be consistent with XPath and 
ECMAScript.

The evaluation of arithmetic operators is described in the following sections. A and B 
are the evaluation of subexpressions

1.7.1 Binary operators - A {+,-,*} B
■ If A and B are null, return (Long)0 

■ If A or B is a BigDecimal, coerce both to BigDecimal and then:

■ If operator is +, return A.add(B)

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

■ If A or B is a Float, Double, or String containing ., e, or E:

■ If A or B is BigInteger, coerce both A and B to BigDecimal and apply 
operator.

■ Otherwise, coerce both A and B to Double and apply operator 

■ If A or B is BigInteger, coerce both to BigInteger and then:

■ If operator is +, return A.add(B)

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

■ Otherwise coerce both A and B to Long and apply operator

■ If operator results in exception, error

1.7.2 Binary operator - A {/,div} B
■ If A and B are null, return (Long)0 

■ If A or B is a BigDecimal or a BigInteger, coerce both to BigDecimal and 
return A.divide(B, BigDecimal.ROUND_HALF_UP)

■ Otherwise, coerce both A and B to Double and apply operator

■ If operator results in exception, error
10 Expression Language Specification • August 2005 (Proposed Final Draft)



1.7.3 Binary operator - A {%,mod} B
■ If A and B are null, return (Long)0

■ If A or B is a BigDecimal, Float, Double, or String containing ., e, or E, 
coerce both A and B to Double and apply operator 

■ If A or B is a BigInteger, coerce both to BigInteger and return 
A.remainder(B).

■ Otherwise coerce both A and B to Long and apply operator

■ If operator results in exception, error

1.7.4 Unary minus operator - -A
■ If A is null, return (Long)0 

■ If A is a BigDecimal or BigInteger, return A.negate().

■ If A is a String:

■ If A contains ., e, or E, coerce to a Double and apply operator

■ Otherwise, coerce to a Long and apply operator 

■ If operator results in exception, error

■ If A is Byte, Short, Integer, Long, Float, Double

■ Retain type, apply operator 

■ If operator results in exception, error

■ Otherwise, error

1.8 Relational Operators
The relational operators are:

■ == and eq

■ != and ne

■ < and lt 

■ > and gt 

■ <= and le 

■ >= and ge 
Chapter 1 Language Syntax and Semantics 11



The second versions of the last 4 operators are made available to avoid having to use 
entity references in XML syntax and have the exact same behavior, i.e. < behaves the 
same as lt and so on.

The evaluation of relational operators is described in the following sections.

1.8.1 A {<,>,<=,>=,lt,gt,le,ge} B
■ If A==B, if operator is <=, le, >=, or ge return true. 

■ If A is null or B is null, return false

■ If A or B is BigDecimal, coerce both A and B to BigDecimal and use the return 
value of A.compareTo(B).

■ If A or B is Float or Double coerce both A and B to Double apply operator 

■ If A or B is BigInteger, coerce both A and B to BigInteger and use the return 
value of A.compareTo(B).

■ If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to 
Long and apply operator 

■ If A or B is String coerce both A and B to String, compare lexically 

■ If A is Comparable, then:

■ If A.compareTo(B) throws exception, error.

■ Otherwise use result of A.compareTo(B) 

■ If B is Comparable, then:

■ If B.compareTo(A) throws exception, error.

■ Otherwise use result of B.compareTo(A) 

■ Otherwise, error 

1.8.2 A {==,!=,eq,ne} B
■ If A==B, apply operator 

■ If A is null or B is null return false for == or eq, true for != or ne.

■ If A or B is BigDecimal, coerce both A and B to BigDecimal and then:

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)

■ If A or B is Float or Double coerce both A and B to Double, apply operator 

■ If A or B is BigInteger, coerce both A and B to BigInteger and then:

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)
12 Expression Language Specification • August 2005 (Proposed Final Draft)



■ If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to 
Long, apply operator 

■ If A or B is Boolean coerce both A and B to Boolean, apply operator 

■ If A or B is String coerce both A and B to String, compare lexically 

■ Otherwise if an error occurs while calling A.equals(B), error 

■ Otherwise, apply operator to result of A.equals(B)

1.9 Logical Operators
The logical operators are:

■ && and and 

■ || and or 

■ ! and not 

The evaluation of logical operators is described in the following sections.

1.9.1 Binary operator - A {&&,||,and,or} B
■ Coerce both A and B to Boolean, apply operator 

The operator stops as soon as the expression can be determined, i.e., A and B and 
C and D – if B is false, then only A and B is evaluated. Unary not operator - 
{!,not} A

■ Coerce A to Boolean, apply operator  

1.10 Empty Operator - empty A
The empty operator is a prefix operator that can be used to determine if a value is 
null or empty.

To evaluate empty A

■ If A is null, return true

■ Otherwise, if A is the empty string, then return true
Chapter 1 Language Syntax and Semantics 13



■ Otherwise, if A is an empty array, then return true

■ Otherwise, if A is an empty Map, return true

■ Otherwise, if A is an empty Collection, return true

■ Otherwise return false

1.11 Conditional Operator - A ? B : C
Evaluate B or C, depending on the result of the evaluation of A.

■ Coerce A to Boolean:

■ If A is true, evaluate and return B

■ If A is false, evaluate and return C

1.12 Parentheses
Parentheses can be used to change precedence, as in: ${(a*(b+c))}

1.13 Operator Precedence
Highest to lowest, left-to-right.

■ [] . 

■ () 

■ - (unary) not ! empty

■ * / div % mod 

■ + - (binary) 

■ < > <= >= lt gt le ge

■ == != eq ne

■ && and 

■ || or 

■ ? :
14 Expression Language Specification • August 2005 (Proposed Final Draft)



Qualified functions with a namespace prefix have precedence over the operators.  
Thus the expression ${c?b:f()} is illegal because b:f() is being parsed as a 
qualified function instead of part of a conditional expression.  As usual, () can be 
used to make the precedence explicit, e.g ${c?b:(f())}

1.14 Reserved Words
The following words are reserved for the language and must not be used as 
identifiers. 

and eq gt true instanceof
or ne le false empty
not lt ge null div mod

Note that many of these words are not in the language now, but they may be in the 
future, so developers must avoid using these words. 

1.15 Functions
The EL has qualified functions, reusing the notion of qualification from XML 
namespaces (and attributes), XSL functions, and JSP custom actions. Functions are 
mapped to public static methods in Java classes. 

The full syntax is that of qualified n-ary functions:

[ns:]f([a1[,a2[,...[,an]]]])

Where ns is the namespace prefix, f is the name of the function, and a is an 
argument.

EL functions are mapped, resolved and bound at parse time.  It is the responsibility 
of the FunctionMapper class to provide the mapping of namespace-qualified 
functions to static methods of specific classes when expressions are created. If no 
FunctionMapper is provided (by passing in null), functions are disabled. 
Chapter 1 Language Syntax and Semantics 15



1.16 Variables
Just like FunctionMapper provides a flexible mechanism to add functions to the 
EL, VariableMapper provides a flexible mechanism to support the notion of EL 
variables.  An EL variable does not directly refer to a model object that can then be 
resolved by an ELResolver. Instead, an EL variable refers to an EL expression. The 
evaluation of that EL expression yields the value associated with the EL variable.

EL variables are mapped, resolved and bound at parse time. It is the responsibility of 
the VariableMapper class to provide the mapping of EL variables to 
ValueExpressions when expressions are created. If no VariableMapper is 
provided (by passing in null), variable mapping is disabled. 

See the javax.el package description for more details. 

1.17 Type Conversion
Every expression is evaluated in the context of an expected type. The result of the 
expression evaluation may not match the expected type exactly, so the rules 
described in the following sections are applied.

1.17.1 To Coerce a Value X to Type Y
■ If X is of a primitive type, Let X’ be the equivalent “boxed form” of X. 

Otherwise, Let X’ be the same as X.

■ If Y is of a primitive type, Let Y’ be the equivalent “boxed form” of Y. 
Otherwise, Let Y’ be the same as Y.

■ Apply the rules in Sections -1.17.5 for coercing X’ to Y’.

■ If Y is a primitive type, then the result is found by "unboxing" the result of the 
coercion. If the result of the coercion is null, then error.

■ If Y is not a primitive type, then the result is the result of the coercion.

For example, if coercing an int to a String, "box" the int into an Integer and 
apply the rule for coercing an Integer to a String. Or if coercing a String to a 
double, apply the rule for coercing a String to a Double, then "unbox" the 
resulting Double, making sure the resulting Double isn’t actually null.
16 Expression Language Specification • August 2005 (Proposed Final Draft)



Coerce A to String

■ If A is String: return A

■ Otherwise, if A is null: return ""

■ Otherwise, if A.toString() throws an exception, error 

■ Otherwise, return A.toString() 

1.17.2 Coerce A to Number type N
■ If A is null or "", return 0. 

■ If A is Character, convert A to new Short((short)a.charValue()), and 
apply the following rules. 

■ If A is Boolean, then error. 

■ If A is Number type N, return A 

■ If A is Number, coerce quietly to type N using the following algorithm:

■ If N is BigInteger
■ If A is a BigDecimal, return A.toBigInteger()
■ Otherwise, return BigInteger.valueOf(A.longValue())

■ If N is BigDecimal,
■ If A is a BigInteger, return new BigDecimal(A)
■ Otherwise, return new BigDecimal(A.doubleValue())

■ If N is Byte, return new Byte(A.byteValue())

■ If N is Short, return new Short(A.shortValue())

■ If N is Integer, return new Integer(A.intValue())

■ If N is Long, return new Long(A.longValue())

■ If N is Float, return new Float(A.floatValue())

■ If N is Double, return new Double(A.doubleValue())

■ Otherwise, error.

■ If A is String, then:

■ If N is BigDecimal then:
■ If new BigDecimal(A) throws an exception then error.
■ Otherwise, return new BigDecimal(A).

■ If N is BigInteger then:
■ If new BigInteger(A) throws an exception then error.
■ Otherwise, return new BigInteger(A).

■ If N.valueOf(A) throws an exception, then error.

■ Otherwise, return N.valueOf(A).

■ Otherwise, error.
Chapter 1 Language Syntax and Semantics 17



1.17.3 Coerce A to Character
■ If A is null or "", return (char)0 

■ If A is Character, return A 

■ If A is Boolean, error 

■ If A is Number, coerce quietly to type Short, then return a Character whose 
numeric value is equivalent to that of a Short.

■ If A is String, return A.charAt (0)

■ Otherwise, error 

1.17.4 Coerce A to Boolean
■ If A is null or "", return false 

■ Otherwise, if A is a Boolean, return A 

■ Otherwise, if A is a String, and Boolean.valueOf(A) does not throw an 
exception, return it

■ Otherwise, error 

1.17.5 Coerce A to Any Other Type T
■ If A is null, return null 

■ If A is assignable to T, coerce quietly 

■ If A is a String, and T has no PropertyEditor:

■ If A is "", return null

■ Otherwise error

■ If A is a String and T's PropertyEditor throws an exception:

■ If A is "", return null

■ Otherwise, error

■ Otherwise, apply T's PropertyEditor

■ Otherwise, error
18 Expression Language Specification • August 2005 (Proposed Final Draft)



1.18 Collected Syntax
The valid syntax for an expression depends on its type.

For value expressions, the parser first attempts to parse the expression using the 
LValue production. If parsing fails, the ValueExpression will be read-only and 
parsing is attempted again using the RValue production. For method expressions, 
the parser must use only the MethodExpression production. ]

These productions take into consideration literal-expressions and composite 
expressions wherever they are accepted.

LValue ::= ‘${‘ LValueInner ‘}’
| ‘#{‘ LValueInner ‘}’

LValueInner ::= Identifier
| NonLiteralValuePrefix (ValueSuffix)*

RValue ::= (RValueComponent1)+
| (RValueComponent2)+

RValueComponent1 ::= ‘${‘ Expression ‘}’
| LiteralExpression

RValueComponent2 ::= ‘#{‘ Expression ‘}’
| LiteralExpression

MethodExpression ::= LValue

LiteralExpression::= (LiteralComponent)* ([$#])?
i.e., a string of any characters that
doesn’t include ${ or #{ unless escaped by
\${ or \#{.

LiteralComponent ::= ([^$#\])*\([$#])?
| ([^$#])*([$#][^{])
| ([^$#])*

Expression ::= Expression1 ExpressionRest?

ExpressionRest ::= ‘?’ Expression ‘:’ Expression

Expression1 ::= Expression BinaryOp Expression
| UnaryExpression

BinaryOp ::= 'and'
| ‘&&’
| ‘or’
| ‘||’
| '+'
| '-'
| '*'
Chapter 1 Language Syntax and Semantics 19



| '/'
| 'div'
| '%'
| 'mod'
| '>'
| 'gt'
| '<'
| 'lt'
| '>='
| 'ge'
| '<='
| 'le'
| '=='
| ‘eq’
| ‘!=’
| ‘ne’

UnaryExpression ::= UnaryOp UnaryExpression
|  Value

UnaryOp ::= '-'
| ‘!’
| ‘not’
| ‘empty’

Value ::= ValuePrefix (ValueSuffix)*

ValuePrefix ::= Literal
| NonLiteralValuePrefix

NonLiteralValuePrefix ::= '(' Expression ')'
| Identifier
| FunctionInvocation

ValueSuffix ::= ‘.’ Identifier
| ‘[‘ Expression ‘]’

Identifier ::= Java language identifier

FunctionInvocation::=(Identifier ‘:’)? Identifier ‘(‘ 
( Expression ( ‘,’ Expression )* )? ‘)’

Literal ::= BooleanLiteral
| IntegerLiteral
| FloatingPointLiteral
| StringLiteral
| NullLiteral

BooleanLiteral ::= 'true'
| ‘false’

StringLiteral ::= '([^'\]|\'|\\)*'
| "([^”\]|\”|\\)*"
i.e., a string of any characters enclosed by 
single or double quotes, where \ is used to 
20 Expression Language Specification • August 2005 (Proposed Final Draft)



escape ', ",and \. It is possible to use single 
quotes within double quotes, and vice versa, 
without escaping.

IntegerLiteral ::= [‘0’-’9’]+

FloatingPointLiteral::= ([‘0’-’9’])+ ‘.’ ([‘0’-’9’])* Exponent?
| ‘.’ ([‘0’-’9’])+ Exponent?
| ([‘0’-’9’])+ Exponent?

Exponent ::= [‘e’,’E’] ([‘+’,’-’])? ([‘0’-’9’])+

NullLiteral ::= 'null'

Notes
■ * = 0 or more, + = 1 or more, ? = 0 or 1.

■ An identifier is constrained to be a Java identifier - e.g., no -, no /, etc.

■ A String only recognizes a limited set of escape sequences, and \ may not 
appear unescaped.

■ The relational operator for equality is == (double equals). 

■ The value of an IntegerLiteral ranges from Long.MIN_VALUE to 
Long.MAX_VALUE

■ The value of a FloatingPointLiteral ranges from Double.MIN_VALUE to 
Double.MAX_VALUE

■ It is illegal to nest ${ or #{ inside an outer ${ or #{.
Chapter 1 Language Syntax and Semantics 21



22 Expression Language Specification • August 2005 (Proposed Final Draft)



CHAPTER 2

Java APIs

This chapter describes the Java APIs exposed by the EL specification. The content of 
this chapter is generated automatically from Javadoc annotations embedded into the 
actual Java classes and interfaces of the implementation. This ensures that both the 
specification and implementation are synchronized.
23



24 Expression Language Specification • August 2005 (Proposed Final Draft)



 

Package

javax.el
Description
Provides the API for the Unified Expression Language shared by the JSP 2.1 and JSF 1.2 technologies. 

The Expression Language (EL) is a simple language designed to satisfy the specific needs of web application 
developers. It is currently defined in its own specification document within the JavaServer Pages (tm) (JSP) 2.1 
specification, but does not have any dependencies on any portion of the JSP 2.1 specification. It is intended for 
general use outside of  the JSP and JSF specifications as well.

This package contains the classes and interfaces that describe and define the programmatic access to the 
Expression Language engine. The API is logically partitioned as follows: 

• EL Context 

• Expression Objects 

• Creation of Expressions 

• Resolution of Model Objects and their Properties 

• EL Functions 

• EL Variables 

EL Context
An important goal of the EL is to ensure it can be used in a variety of environments. It must therefore provide 
enough flexibility to adapt to the specific requirements of the environment where it is being used.

Class ELContext46 is what links the EL with the specific environment where it is being used. It provides the 
mechanism through which all relevant context for creating or evaluating an expression is specified. 

Creation of ELContext objects is controlled through the underlying technology. For example, in JSP, the 
JspContext.getELContext() factory method is used.

Some technologies provide the ability to add an ELContextListener52 so that applications and 
frameworks can ensure their own context objects are attached to any newly created ELContext.

Expression Objects
At the core of the Expression Language is the notion of an expression that gets parsed according to the grammar 
defined by the Expression Language.

There are two types of expressions defined by the EL: value expressions and method expressions. A 
ValueExpression95 such as “${customer.name}” can be used either as an rvalue (return the value 
associated with property name of the model object customer) or as an lvalue (set the value of the property 
name of the model object customer).

A MethodExpression80 such as “${handler.process}” makes it possible to invoke a method 
(process) on a specific model object (handler).

All expression classes extend the base class Expression61, making them serializable and forcing them to 
implement equals() and hashCode(). Morevover, each method on these expression classes that actually 
evaluates an expression receives a parameter of class ELContext46, which provides the context required to 
evaluate the expression.
javax.el 25



javax.el  
Creation of Expressions
An expression is created through the ExpressionFactory64 class. The factory provides two creation 
methods; one for each type of expression supported by the EL.

To create an expression, one must provide an ELContext46, a string representing the expression, and the 
expected type (ValueExpression) or signature (MethodExpression). The ELContext provides the 
context necessary to parse an expression. Specifically, if the expression uses an EL function (for example 
${fn:toUpperCase(customer.name)}) or an EL variable, then FunctionMapper68 and 
VariableMapper99 objects must be available within the ELContext so that EL functions and EL variables 
are properly mapped. 

Resolution of Model Objects and their Properties
Through the ELResolver55 base class, the EL features a pluggable mechanism to resolve model object 
references as well as properties of these objects.

The EL API provides implementations of ELResolver supporting property resolution for common data types 
which include arrays (ArrayELResolver29), JavaBeans (BeanELResolver34), Lists 
(ListELResolver70), Maps (MapELResolver75), and ResourceBundles 
(ResourceBundleELResolver91).

Tools can easily obtain more information about resolvable model objects and their resolvable properties by 
calling method getFeatureDescriptors on the ELResolver. This method exposes objects of type 
java.beans.FeatureDescriptor, providing all information of interest on top-level model objects as 
well as their properties.

EL Functions
If an EL expression uses a function (for example ${fn:toUpperCase(customer.name)}), then a 
FunctionMapper68 object must also be specified within the ELContext. The FunctionMapper is 
responsible to map ${prefix:name()} style functions to static methods that can execute the specified 
functions. 

EL Variables
Just like FunctionMapper68 provides a flexible mechanism to add functions to the EL, 
VariableMapper99 provides a flexible mechanism to support the notion of EL variables. 

An EL variable does not directly refer to a model object that can then be resolved by an ELResolver. Instead, 
it refers to an EL expression. The evaluation of that EL expression gives the EL variable its value. 

For example, in the following code snippet 

<h:inputText value=“#{handler.customer.name}”/> 

handler refers to a model object that can be resolved by an EL Resolver. 

However, in this other example: 

<c:forEach var=“item” items=“#{model.list}”>
<h:inputText value=“#{item.name}”/>

</c:forEach>
item is an EL variable because it does not refer directly to a model object. Instead, it refers to another EL 
expression, namely a specific item in the collection referred to by the EL expression #{model.list}. 

Assuming that there are three elements in ${model.list}, this means that for each invocation 
of <h:inputText>, the following information about item must be preserved in 
the VariableMapper99: 
26 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el
first invocation: item maps to first element in ${model.list}
second invocation: item maps to second element in ${model.list}
third invocation: item maps to third element in ${model.list}

VariableMapper provides the mechanisms required to allow the mapping  of an EL 
variable to the EL expression from which it gets its value. 

Class Summary

Interfaces

ELContextListener52 The listener interface for receiving notification when an ELContext46 is created.

Classes

ArrayELResolver29 Defines property resolution behavior on arrays.

BeanELResolver34 Defines property resolution behavior on objects using the JavaBeans component 
architecture.

CompositeELResolver39 Maintains an ordered composite list of child ELResolvers.

ELContext46 Context information for expression evaluation.

ELContextEvent50 An event which indicates that an ELContext46 has been created.

ELResolver55 Enables customization of variable and property resolution behavior for EL expression 
evaluation.

Expression61 Base class for the expression subclasses ValueExpression95 and 
MethodExpression80, implementing characterstics common to both.

ExpressionFactory64 Parses a String into a ValueExpression95 or MethodExpression80 
instance for later evaluation.

FunctionMapper68 The interface to a map between EL function names and methods.

ListELResolver70 Defines property resolution behavior on instances of java.util.List.

MapELResolver75 Defines property resolution behavior on instances of java.util.Map.

MethodExpression80 An Expression that refers to a method on an object.

MethodInfo83 Holds information about a method that a MethodExpression80 evaluated to.

ResourceBundleELResolv
er91

Defines property resolution behavior on instances of 
java.util.ResourceBundle.

ValueExpression95 An Expression that can get or set a value.

VariableMapper99 The interface to a map between EL variables and the EL expressions they are 
associated with.

Exceptions

ELException53 Represents any of the exception conditions that can arise during expression evaluation.

MethodNotFoundExceptio
n85

Thrown when a method could not be found while evaluating a 
MethodExpression80.
javax.el 27



javax.el  
PropertyNotFoundExcept
ion87

Thrown when a property could not be found while evaluating a 
ValueExpression95 or MethodExpression80.

PropertyNotWritableExc
eption89

Thrown when a property could not be written to while setting the value on a 
ValueExpression95.

Class Summary
28 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ArrayELResolver
javax.el

ArrayELResolver
Declaration
public class ArrayELResolver extends ELResolver55
 
java.lang.Object

|
+--javax.el.ELResolver55

|
+--javax.el.ArrayELResolver

Description
Defines property resolution behavior on arrays. 

This resolver handles base objects that are Java language arrays. It accepts any object as a property and coerces 
that object into an integer index into the array. The resulting value is the value in the array at that index.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true 
and setValue(ELContext, Object, Object, Object)32 will always throw 
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver39s, to define rich semantics for 
evaluating an expression. See the javadocs for ELResolver55 for details.

Since: JSP 2.1

See Also: CompositeELResolver39, ELResolver55

Member Summary

Constructors
ArrayELResolver()30
ArrayELResolver(boolean isReadOnly)30

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object 

base)30
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object 

base)30
 java.lang.Class getType(ELContext context, java.lang.Object base, 

java.lang.Object property)31
 java.lang.Object getValue(ELContext context, java.lang.Object base, 

java.lang.Object property)31
 boolean isReadOnly(ELContext context, java.lang.Object base, 

java.lang.Object property)32
 void setValue(ELContext context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)32
javax.el ArrayELResolver 29



ArrayELResolver  javax.el

ArrayELResolver()
Constructors

ArrayELResolver()

public ArrayELResolver()

Creates a new read/write ArrayELResolver.

ArrayELResolver(boolean)

public ArrayELResolver(boolean isReadOnly)

Creates a new ArrayELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify arrays; false otherwise.

Methods

getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is a Java language array, returns the most general type that this resolver accepts for the 
property argument. Otherwise, returns null. 

Assuming the base is an array, this method will always return Integer.class. This is because arrays 
accept integers for their index.

Overrides: getCommonPropertyType57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are a Java language array are handled by this resolver.

Returns: null if base is not a Java language array; otherwise Integer.class.

getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext46 context, 

java.lang.Object base)

Always returns null, since there is no reason to iterate through set set of all integers. 

Inherited Member Summary

Fields inherited from class ELResolver55

RESOLVABLE_AT_DESIGN_TIME56, TYPE56

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
30 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ArrayELResolver

getType(ELContext, Object, Object)
The getCommonPropertyType(ELContext, Object)30 method returns sufficient information 
about what properties this resolver accepts.

Overrides: getFeatureDescriptors57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are a Java language array are handled by this resolver.

Returns: null.

getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is an array, returns the most general acceptable type for a value in this array. 

If the base is a array, the propertyResolved property of the ELContext object must be set to 
true by this resolver, before returning. If this property is not true after this method is called, the caller 
should ignore the return value.

Assuming the base is an array, this method will always return 
base.getClass().getComponentType(), which is the most general type of component that can 
be stored at any given index in the array.

Overrides: getType58 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are Java language arrays are handled by this resolver.

property - The index of the element in the array to return the acceptable type for. Will be coerced 
into an integer, but  otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then the most general 
acceptable type; otherwise undefined.

Throws:
PropertyNotFoundException87 - if the given index is out of bounds for this array.

java.lang.NullPointerException - if context is null

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is a Java language array, returns the value at the given index. The index is specified by the 
property argument, and coerced into an integer. If the coercion could not be performed, an 
IllegalArgumentException is thrown. If the index is out of bounds, null is returned. 

If the base is a Java language array, the propertyResolved property of the ELContext object must 
be set to true by this resolver, before returning. If this property is not true after this method is called, the 
caller should ignore the return value.

Overrides: getValue59 in class ELResolver55
javax.el ArrayELResolver 31



ArrayELResolver  javax.el

isReadOnly(ELContext, Object, Object)
Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are Java language arrays are handled by this resolver.

property - The index of the value to be returned. Will be coerced  into an integer.

Returns: If the propertyResolved property of ELContext was set to true, then the value at the 
given index or null if the index was out of bounds. Otherwise, undefined.

Throws:
java.lang.IllegalArgumentException - if the property could not be coerced into an 
integer.

java.lang.NullPointerException - if context is null.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is a Java language array, returns whether a call to setValue(ELContext, Object, 
Object, Object)32 will always fail. 

If the base is a Java language array, the propertyResolved property of the ELContext object must 
be set to true by this resolver, before returning. If this property is not true after this method is called, the 
caller should ignore the return value.

If this resolver was constructed in read-only mode, this method will always return true. Otherwise, it 
returns false.

Overrides: isReadOnly59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The array to analyze. Only bases that are a Java language array are handled by this resolver.

property - The index of the element in the array to return the acceptable type for. Will be coerced 
into an integer, but  otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then true if calling 
the setValue method will always fail or false if it is possible that such a call may succeed; 
otherwise undefined.

Throws:
PropertyNotFoundException87 - if the given index is out of bounds for this array.

java.lang.NullPointerException - if context is null

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)
32 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ArrayELResolver

setValue(ELContext, Object, Object, Object)
If the base object is a Java language array, attempts to set the value at the given index with the given value. 
The index is specified by the property argument, and coerced into an integer. If the coercion could not 
be performed, an IllegalArgumentException is thrown. If the index is out of bounds, a 
PropertyNotFoundException is thrown. 

If the base is a Java language array, the propertyResolved property of the ELContext object must 
be set to true by this resolver, before returning. If this property is not true after this method is called, the 
caller can safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw 
PropertyNotWritableException.

Overrides: setValue60 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The array to be modified. Only bases that are Java language arrays are handled by this resolver.

property - The index of the value to be set. Will be coerced into an integer.

val - The value to be set at the given index.

Throws:
java.lang.ClassCastException - if the class of the specified element prevents it from being 
added to this array.

java.lang.NullPointerException - if context is null.

java.lang.IllegalArgumentException - if the property could not be coerced into an 
integer, or if some aspect of the specified element prevents it from being added to this array.

PropertyNotWritableException89 - if this resolver was constructed in read-only mode.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.
javax.el ArrayELResolver 33



BeanELResolver  javax.el

setValue(ELContext, Object, Object, Object)
javax.el

BeanELResolver
Declaration
public class BeanELResolver extends ELResolver55
 
java.lang.Object

|
+--javax.el.ELResolver55

|
+--javax.el.BeanELResolver

Description
Defines property resolution behavior on objects using the JavaBeans component architecture. 

This resolver handles base objects of any type, as long as the base is not null. It accepts any object as a 
property, and coerces it to a string. That string is then used to find a JavaBeans compliant property on the base 
object. The value is accessed using JavaBeans getters and setters.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true 
and setValue(ELContext, Object, Object, Object)38 will always throw 
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver39s, to define rich semantics for 
evaluating an expression. See the javadocs for ELResolver55 for details.

Because this resolver handles base objects of any type, it should be placed near the end of a composite resolver. 
Otherwise, it will claim to have resolved a property before any resolvers that come after it get a chance to test if 
they can do so as well.

Since: JSP 2.1

See Also: CompositeELResolver39, ELResolver55

Member Summary

Constructors
BeanELResolver()35
BeanELResolver(boolean isReadOnly)35

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object 

base)35
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object 

base)36
 java.lang.Class getType(ELContext context, java.lang.Object base, 

java.lang.Object property)36
 java.lang.Object getValue(ELContext context, java.lang.Object base, 

java.lang.Object property)37
 boolean isReadOnly(ELContext context, java.lang.Object base, 

java.lang.Object property)37
34 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el BeanELResolver

BeanELResolver()
Constructors

BeanELResolver()

public BeanELResolver()

Creates a new read/write BeanELResolver.

BeanELResolver(boolean)

public BeanELResolver(boolean isReadOnly)

Creates a new BeanELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify beans; false otherwise.

Methods

getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is not null, returns the most general type that this resolver accepts for the property 
argument. Otherwise, returns null. 

Assuming the base is not null, this method will always return Object.class. This is because any 
object is accepted as a key and is coerced into a string.

Overrides: getCommonPropertyType57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The bean to analyze.

Returns: null if base is null; otherwise Object.class.

 void setValue(ELContext context, java.lang.Object base, 
java.lang.Object property, java.lang.Object val)38

Inherited Member Summary

Fields inherited from class ELResolver55

RESOLVABLE_AT_DESIGN_TIME56, TYPE56

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)

Member Summary
javax.el BeanELResolver 35



BeanELResolver  javax.el

getFeatureDescriptors(ELContext, Object)
getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is not null, returns an Iterator containing the set of JavaBeans properties available 
on the given object. Otherwise, returns null. 

The Iterator returned must contain zero or more instances of 
java.beans.FeatureDescriptor. Each info object contains information about a property in the 
bean, as obtained by calling the BeanInfo.getPropertyDescriptors method. The 
FeatureDescriptor is initialized using the same fields as are present in the 
PropertyDescriptor, with the additional required named attributes “type” and 
“resolvableAtDesignTime” set as follows: 

ELResolver.TYPE56 - The runtime type of the property, from 
PropertyDescriptor.getPropertyType(). 
ELResolver.RESOLVABLE_AT_DESIGN_TIME56 - true. 

Overrides: getFeatureDescriptors57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The bean to analyze.

Returns: An Iterator containing zero or more FeatureDescriptor objects, each representing a 
property on this bean, or null if the base object is null.

getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is not null, returns the most general acceptable type that can be set on this bean 
property. 

If the base is not null, the propertyResolved property of the ELContext object must be set to 
true by this resolver, before returning. If this property is not true after this method is called, the caller 
should ignore the return value.

The provided property will first be coerced to a String. If there is a BeanInfoProperty for this 
property and there were no errors retrieving it, the propertyType of the propertyDescriptor is 
returned. Otherwise, a PropertyNotFoundException is thrown.

Overrides: getType58 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The bean to analyze.

property - The name of the property to analyze. Will be coerced to a String.

Returns: If the propertyResolved property of ELContext was set to true, then the most general 
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if base is not null and the specified property does not 
exist or is not readable.
36 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el BeanELResolver

getValue(ELContext, Object, Object)
ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is not null, returns the current value of the given property on this bean. 

If the base is not null, the propertyResolved property of the ELContext object must be set to 
true by this resolver, before returning. If this property is not true after this method is called, the caller 
should ignore the return value.

The provided property name will first be coerced to a String. If the property is a readable property of the 
base object, as per the JavaBeans specification, then return the result of the getter call. If the getter throws 
an exception, it is propagated to the caller. If the property is not found or is not readable, a 
PropertyNotFoundException is thrown.

Overrides: getValue59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The bean on which to get the property.

property - The name of the property to get. Will be coerced to a String.

Returns: If the propertyResolved property of ELContext was set to true, then the value of the 
given property. Otherwise, undefined.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException87 - if base is not null and the specified property does not 
exist or is not readable.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is not null, returns whether a call to setValue(ELContext, Object, 
Object, Object)38 will always fail. 

If the base is not null, the propertyResolved property of the ELContext object must be set to 
true by this resolver, before returning. If this property is not true after this method is called, the caller 
can safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always return true.

The provided property name will first be coerced to a String. If property is a writable property of base, 
false is returned. If the property is found but is not writable, true is returned. If the property is not 
found, a PropertyNotFoundException is thrown.

Overrides: isReadOnly59 in class ELResolver55
javax.el BeanELResolver 37



BeanELResolver  javax.el

setValue(ELContext, Object, Object, Object)
Parameters:
context - The context of this evaluation.

base - The bean to analyze.

property - The name of the property to analyzed. Will be coerced to a String.

Returns: If the propertyResolved property of ELContext was set to true, then true if calling 
the setValue method will always fail or false if it is possible that such a call may succeed; 
otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if base is not null and the specified property does not 
exist.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)

If the base object is not null, attempts to set the value of the given property on this bean. 

If the base is not null, the propertyResolved property of the ELContext object must be set to 
true by this resolver, before returning. If this property is not true after this method is called, the caller 
can safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw 
PropertyNotWritableException.

The provided property name will first be coerced to a String. If property is a writable property of base 
(as per the JavaBeans Specification), the setter method is called (passing value). If the property exists but 
does not have a setter, then a PropertyNotFoundException is thrown. If the property does not exist, 
a PropertyNotFoundException is thrown.

Overrides: setValue60 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The bean on which to set the property.

property - The name of the property to set. Will be coerced to a String.

val - The value to be associated with the specified key.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException87 - if base is not null and the specified property does not 
exist.

PropertyNotWritableException89 - if this resolver was constructed in read-only mode, or if 
there is no setter for the property.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.
38 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el CompositeELResolver

setValue(ELContext, Object, Object, Object)
javax.el

CompositeELResolver
Declaration
public class CompositeELResolver extends ELResolver55
 
java.lang.Object

|
+--javax.el.ELResolver55

|
+--javax.el.CompositeELResolver

Description
Maintains an ordered composite list of child ELResolvers. 

Though only a single ELResolver is associated with an ELContext, there are usually multiple resolvers 
considered for any given variable or property resolution. ELResolvers are combined together using a 
CompositeELResolver, to define rich semantics for evaluating an expression.

For the getValue(ELContext, Object, Object)42, getType(ELContext, Object, 
Object)41, setValue(ELContext, Object, Object, Object)44 and 
isReadOnly(ELContext, Object, Object)43 methods, an ELResolver is not responsible for 
resolving all possible (base, property) pairs. In fact, most resolvers will only handle a base of a single type. To 
indicate that a resolver has successfully resolved a particular (base, property) pair, it must set the 
propertyResolved property of the ELContext to true. If it could not handle the given pair, it must 
leave this property alone. The caller must ignore the return value of the method if propertyResolved is 
false.

The CompositeELResolver initializes the ELContext.propertyResolved flag to false, and uses 
it as a stop condition for iterating through its component resolvers.

The ELContext.propertyResolved flag is not used for the design-time methods 
getFeatureDescriptors(ELContext, Object)41 and 
getCommonPropertyType(ELContext, Object)40. Instead, results are collected and combined 
from all child ELResolvers for these methods.

Since: JSP 2.1

See Also: ELContext46, ELResolver55

Member Summary

Constructors
CompositeELResolver()40

Methods
 void add(ELResolver elResolver)40

 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object 
base)40

 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object 
base)41
javax.el CompositeELResolver 39



CompositeELResolver  javax.el

CompositeELResolver()
Constructors

CompositeELResolver()

public CompositeELResolver()

Methods

add(ELResolver)

public void add(javax.el.ELResolver55 elResolver)

Adds the given resolver to the list of component resolvers. 

Resolvers are consulted in the order in which they are added.

Parameters:
elResolver - The component resolver to add.

Throws:
java.lang.NullPointerException - If the provided resolver is null.

getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext46 context, 

java.lang.Object base)

Returns the most general type that this resolver accepts for the property argument, given a base object. 
One use for this method is to assist tools in auto-completion. The result is obtained by querying all 
component resolvers. 

 java.lang.Class getType(ELContext context, java.lang.Object base, 
java.lang.Object property)41

 java.lang.Object getValue(ELContext context, java.lang.Object base, 
java.lang.Object property)42

 boolean isReadOnly(ELContext context, java.lang.Object base, 
java.lang.Object property)43

 void setValue(ELContext context, java.lang.Object base, 
java.lang.Object property, java.lang.Object val)44

Inherited Member Summary

Fields inherited from class ELResolver55

RESOLVABLE_AT_DESIGN_TIME56, TYPE56

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)

Member Summary
40 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el CompositeELResolver

getFeatureDescriptors(ELContext, Object)
The Class returned is the most specific class that is a common superclass of all the classes returned by 
each component resolver’s getCommonPropertyType method. If null is returned by a resolver, it is 
skipped.

Overrides: getCommonPropertyType57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The base object to return the most general property type for, or null to enumerate the set of 
top-level variables that this resolver can evaluate.

Returns: null if this ELResolver does not know how to handle the given base object; otherwise 
Object.class if any type of property is accepted; otherwise the most general property type 
accepted for the given base.

getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext46 context, 

java.lang.Object base)

Returns information about the set of variables or properties that can be resolved for the given base object. 
One use for this method is to assist tools in auto-completion. The results are collected from all component 
resolvers. 

The propertyResolved property of the ELContext is not relevant to this method. The results of all 
ELResolvers are concatenated.

The Iterator returned is an iterator over the collection of FeatureDescriptor objects returned by 
the iterators returned by each component resolver’s getFeatureDescriptors method. If null is 
returned by a resolver, it is skipped.

Overrides: getFeatureDescriptors57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The base object whose set of valid properties is to be enumerated, or null to enumerate the set 
of top-level variables that this resolver can evaluate.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor 
objects, or null if this resolver does not handle the given base object or that the results are too 
complex to represent with this method

getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

For a given base and property, attempts to identify the most general type that is acceptable for an 
object to be passed as the value parameter in a future call to the setValue(ELContext, Object, 
Object, Object)44 method. The result is obtained by querying all component resolvers. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller should ignore  the return value.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite: 
javax.el CompositeELResolver 41



CompositeELResolver  javax.el

getValue(ELContext, Object, Object)
1. The getType() method is called, passing in the provided context, base and property. 

2. If the ELContext’s propertyResolved flag is false then iteration continues. 

3. Otherwise, iteration stops and no more component resolvers are considered. The value returned by 
getType() is returned by this method. 

If none of the component resolvers were able to perform this operation, the value null is returned and the 
propertyResolved flag remains set to false

. 

Any exception thrown by component resolvers during the iteration is propagated to the caller of this 
method.

Overrides: getType58 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be analyzed, or null to analyze a top-level 
variable.

property - The property or variable to return the acceptable type for.

Returns: If the propertyResolved property of ELContext was set to true, then the most general 
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist or is not readable.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

Attempts to resolve the given property object on the given base object by querying all component 
resolvers. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller should ignore  the return value.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite: 

1. The getValue() method is called, passing in the provided context, base and property. 

2. If the ELContext’s propertyResolved flag is false then iteration continues. 

3. Otherwise, iteration stops and no more component resolvers are considered. The value returned by 
getValue() is returned by this method. 

If none of the component resolvers were able to perform this operation, the value null is returned and the 
propertyResolved flag remains set to false

. 
42 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el CompositeELResolver

isReadOnly(ELContext, Object, Object)
Any exception thrown by component resolvers during the iteration is propagated to the caller of this 
method.

Overrides: getValue59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be returned, or null to resolve a top-level variable.

property - The property or variable to be resolved.

Returns: If the propertyResolved property of ELContext was set to true, then the result of the 
variable or property resolution; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist or is not readable.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

For a given base and property, attempts to determine whether a call to setValue(ELContext, 
Object, Object, Object)44 will always fail. The result is obtained by querying all component 
resolvers. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller should ignore  the return value.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite: 

1. The isReadOnly() method is called, passing in the provided context, base and property. 

2. If the ELContext’s propertyResolved flag is false then iteration continues. 

3. Otherwise, iteration stops and no more component resolvers are considered. The value returned by 
isReadOnly() is returned by this method. 

If none of the component resolvers were able to perform this operation, the value false is returned and 
the propertyResolved flag remains set to false

. 

Any exception thrown by component resolvers during the iteration is propagated to the caller of this 
method.

Overrides: isReadOnly59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be analyzed, or null to analyze a top-level 
variable.
javax.el CompositeELResolver 43



CompositeELResolver  javax.el

setValue(ELContext, Object, Object, Object)
property - The property or variable to return the read-only status for.

Returns: If the propertyResolved property of ELContext was set to true, then true if the 
property is read-only or false if not; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)

Attempts to set the value of the given property object on the given base object. All component 
resolvers are asked to attempt to set the value. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller can safely assume no value has been set.

First, propertyResolved is set to false on the provided ELContext.

Next, for each component resolver in this composite: 

1. The setValue() method is called, passing in the provided context, base, property and 
value. 

2. If the ELContext’s propertyResolved flag is false then iteration continues. 

3. Otherwise, iteration stops and no more component resolvers are considered. 

If none of the component resolvers were able to perform this operation, the propertyResolved flag 
remains set to false

. 

Any exception thrown by component resolvers during the iteration is propagated to the caller of this 
method.

Overrides: setValue60 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be set, or null to set a top-level variable.

property - The property or variable to be set.

val - The value to set the property or variable to.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist.

PropertyNotWritableException89 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property is not writable.
44 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el CompositeELResolver

setValue(ELContext, Object, Object, Object)
ELException53 - if an exception was thrown while attempting to set the property or variable. The 
thrown exception must be included as the cause property of this exception, if available.
javax.el CompositeELResolver 45



ELContext  javax.el

setValue(ELContext, Object, Object, Object)
javax.el

ELContext
Declaration
public abstract class ELContext
 
java.lang.Object

|
+--javax.el.ELContext

Description
Context information for expression evaluation. 

To evaluate an Expression61, an ELContext must be provided. The ELContext holds: 

• a reference to the base ELResolver55 that will be consulted to resolve model objects and their properties 

• a reference to FunctionMapper68 that will be used to resolve EL Functions. 

• a reference to VariableMapper99 that will be used to resolve EL Variables. 

• a collection of all the relevant context objects for use by ELResolvers 

• state information during the evaluation of an expression, such as whether a property has been resolved yet 

The collection of context objects is necessary because each ELResolver may need access to a different 
context object. For example, JSP and Faces resolvers need access to a 
javax.servlet.jsp.JspContext and a javax.faces.context.FacesContext, respectively.

Creation of ELContext objects is controlled through the underlying technology. For example, in JSP the 
JspContext.getELContext() factory method is used. Some technologies provide the ability to add an 
ELContextListener52 so that applications and frameworks can ensure their own context objects are 
attached to any newly created ELContext.

Because it stores state during expression evaluation, an ELContext object is not thread-safe. Care should be 
taken to never share an ELContext instance between two or more threads.

Since: JSP 2.1

See Also: ELContextListener52, ELContextEvent50, ELResolver55, FunctionMapper68, 
VariableMapper99, javax.servlet.jsp.JspContext

Member Summary

Constructors
ELContext()47

Methods
 java.lang.Object getContext(java.lang.Class key)47

abstract ELResolver getELResolver()47
abstract

FunctionMapper
getFunctionMapper()48

 java.util.Locale getLocale()48
46 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ELContext

ELContext()
Constructors

ELContext()

public ELContext()

Methods

getContext(Class)

public java.lang.Object getContext(java.lang.Class key)

Returns the context object associated with the given key. 

The ELContext maintains a collection of context objects relevant to the evaluation of an expression. 
These context objects  are used by ELResolvers. This method is used to retrieve the context with the 
given key from the collection.

By convention, the object returned will be of the type specified by the key. However, this is not required 
and the key is used strictly as a unique identifier.

Parameters:
key - The unique identifier that was used to associate the context object with this ELContext.

Returns: The context object associated with the given key, or null if no such context was found.

Throws:
java.lang.NullPointerException - if key is null.

getELResolver()

public abstract javax.el.ELResolver55 getELResolver()

Retrieves the ELResolver associated with this context. 

abstract
VariableMapper

getVariableMapper()48

 boolean isPropertyResolved()48
 void putContext(java.lang.Class key, java.lang.Object 

contextObject)48
 void setLocale(java.util.Locale locale)49
 void setPropertyResolved(boolean resolved)49

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)

Member Summary
javax.el ELContext 47



ELContext  javax.el

getFunctionMapper()
The ELContext maintains a reference to the ELResolver that will be consulted to resolve variables 
and properties during an expression evaluation. This method retrieves the reference to the resolver.

Once an ELContext is constructed, the reference to the ELResolver associated with the context cannot 
be changed.

Returns: The resolver to be consulted for variable and property resolution during expression evaluation.

getFunctionMapper()

public abstract javax.el.FunctionMapper68 getFunctionMapper()

Retrieves the FunctionMapper associated with this ELContext.

Returns: The function mapper to be consulted for the resolution of EL functions.

getLocale()

public java.util.Locale getLocale()

Get the Locale stored by a previous invocation to setLocale(Locale)49. If this method returns non 
null, this Locale must be used for all localization needs in the implementation. The Locale must not 
be cached to allow for applications that change Locale dynamically.

Returns: The Locale in which this instance is operating. Used primarily for message localization.

getVariableMapper()

public abstract javax.el.VariableMapper99 getVariableMapper()

Retrieves the VariableMapper associated with this ELContext.

Returns: The variable mapper to be consulted for the resolution of EL variables.

isPropertyResolved()

public boolean isPropertyResolved()

Returns whether an ELResolver55 has successfully resolved a given (base, property) pair. 

The CompositeELResolver39 checks this property to determine whether it should consider or skip 
other component resolvers.

Returns: true if the property has been resolved, or false if not.

See Also: CompositeELResolver39

putContext(Class, Object)

public void putContext(java.lang.Class key, java.lang.Object contextObject)

Associates a context object with this ELContext. 

The ELContext maintains a collection of context objects relevant to the evaluation of an expression. 
These context objects  are used by ELResolvers. This method is used to add a context object to that 
collection.

By convention, the contextObject will be of the type specified by the key. However, this is not 
required and the key is used strictly as a unique identifier.

Parameters:
key - The key used by an @{link ELResolver} to identify this  context object.
48 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ELContext

setLocale(Locale)
contextObject - The context object to add to the collection.

Throws:
java.lang.NullPointerException - if key is null or contextObject is null.

setLocale(Locale)

public void setLocale(java.util.Locale locale)

Set the Locale for this instance. This method may be called by the party creating the instance, such as 
JavaServer Faces or JSP, to enable the EL implementation to provide localized messages to the user. If no 
Locale is set, the implementation must use the locale returned by Locale.getDefault( ).

setPropertyResolved(boolean)

public void setPropertyResolved(boolean resolved)

Called to indicate that a ELResolver has successfully resolved a given (base, property) pair. 

The CompositeELResolver39 checks this property to determine whether it should consider or skip 
other component resolvers.

Parameters:
resolved - true if the property has been resolved, or false if not.

See Also: CompositeELResolver39
javax.el ELContext 49



ELContextEvent  javax.el

setPropertyResolved(boolean)
javax.el

ELContextEvent
Declaration
public class ELContextEvent extends java.util.EventObject
 
java.lang.Object

|
+--java.util.EventObject

|
+--javax.el.ELContextEvent

All Implemented Interfaces: java.io.Serializable

Description
An event which indicates that an ELContext46 has been created. The source object is the ELContext that was 
created.

Since: JSP 2.1

See Also: ELContext46, ELContextListener52

Member Summary

Constructors
ELContextEvent(ELContext source)51

Methods
 ELContext getELContext()51

Inherited Member Summary

Fields inherited from class EventObject

source

Methods inherited from class EventObject

getSource(), toString()

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
wait(), wait(long), wait(long, int)
50 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ELContextEvent

ELContextEvent(ELContext)
Constructors

ELContextEvent(ELContext)

public ELContextEvent(javax.el.ELContext46 source)

Constructs an ELContextEvent object to indicate that an ELContext has been created.

Parameters:
source - the ELContext that was created.

Methods

getELContext()

public javax.el.ELContext46 getELContext()

Returns the ELContext that was created. This is a type-safe equivalent of the 
java.util.EventObject.getSource() method.

Returns: the ELContext that was created.
javax.el ELContextEvent 51



ELContextListener  javax.el

contextCreated(ELContextEvent)
javax.el

ELContextListener
Declaration
public interface ELContextListener extends java.util.EventListener

All Superinterfaces: java.util.EventListener

Description
The listener interface for receiving notification when an ELContext46 is created.

Since: JSP 2.1

See Also: ELContext46, ELContextEvent50

Methods

contextCreated(ELContextEvent)

public void contextCreated(javax.el.ELContextEvent50 ece)

Invoked when a new ELContext has been created.

Parameters:
ece - the notification event.

Member Summary

Methods
 void contextCreated(ELContextEvent ece)52
52 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ELException

contextCreated(ELContextEvent)
javax.el

ELException
Declaration
public class ELException extends java.lang.RuntimeException
 
java.lang.Object

|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: MethodNotFoundException85, 
PropertyNotFoundException87, PropertyNotWritableException89

Description
Represents any of the exception conditions that can arise during expression evaluation.

Since: JSP 2.1

Member Summary

Constructors
ELException()54
ELException(java.lang.String pMessage)54
ELException(java.lang.String pMessage, java.lang.Throwable 
pRootCause)54
ELException(java.lang.Throwable pRootCause)54

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(), 
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream), 
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
javax.el ELException 53



ELException  javax.el

ELException()
Constructors

ELException()

public ELException()

Creates an ELException with no detail message.

ELException(String)

public ELException(java.lang.String pMessage)

Creates an ELException with the provided detail message.

Parameters:
pMessage - the detail message

ELException(Throwable)

public ELException(java.lang.Throwable pRootCause)

Creates an ELException with the given cause.

Parameters:
pRootCause - the originating cause of this exception

ELException(String, Throwable)

public ELException(java.lang.String pMessage, java.lang.Throwable pRootCause)

Creates an ELException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception
54 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ELResolver

ELException(String, Throwable)
javax.el

ELResolver
Declaration
public abstract class ELResolver
 
java.lang.Object

|
+--javax.el.ELResolver

Direct Known Subclasses: ArrayELResolver29, BeanELResolver34, 
CompositeELResolver39, ListELResolver70, MapELResolver75, 
ResourceBundleELResolver91

Description
Enables customization of variable and property resolution behavior for EL expression evaluation. 

While evaluating an expression, the ELResolver associated with the ELContext46 is consulted to do the 
initial resolution of the first variable of an expression. It is also consulted when a . or [] operator is 
encountered, except for the last such operator in a method expression, in which case the resultion rules are hard 
coded.

For example, in the EL expression ${employee.lastName}, the ELResolver determines what object 
employee refers to, and what it means to get the lastName property on that object.

Most methods in this class accept a base and property parameter. In the case of variable resolution (e.g. 
determining what employee refers to in ${employee.lastName}), the base parameter will be null 
and the property parameter will always be of type String. In this case, if the property is not a String, 
the behavior of the ELResolver is undefined.

In the case of property resolution, the base parameter identifies the base object and the property object 
identifies the property on that base. For example, in the expression ${employee.lastName}, base is the 
result of the variable resolution for employee and property is the string “lastName”. In the expression 
${y[x]}, base is the result of the variable resolution for y and property is the result of the variable 
resolution for x.

Though only a single ELResolver is associated with an ELContext, there are usually multiple resolvers 
considered for any given variable or property resolution. ELResolvers are combined together using 
CompositeELResolver39s, to define rich semantics for evaluating an expression.

For the getValue(ELContext, Object, Object)59, getType(ELContext, Object, 
Object)58, setValue(ELContext, Object, Object, Object)60 and 
isReadOnly(ELContext, Object, Object)59 methods, an ELResolver is not responsible for 
resolving all possible (base, property) pairs. In fact, most resolvers will only handle a base of a single type. To 
indicate that a resolver has successfully resolved a particular (base, property) pair, it must set the 
propertyResolved property of the ELContext to true. If it could not handle the given pair, it must 
leave this property alone. The caller must ignore the return value of the method if propertyResolved is 
false.

The getFeatureDescriptors(ELContext, Object)57 and 
getCommonPropertyType(ELContext, Object)57 methods are primarily designed for design-time 
tool support, but must handle invocation at runtime as well. The java.beans.Beans.isDesignTime() 
method can be used to determine if the resolver is being consulted at design-time or runtime.
javax.el ELResolver 55



ELResolver  javax.el

RESOLVABLE_AT_DESIGN_TIME
Since: JSP 2.1

See Also: CompositeELResolver39, ELContext.getELResolver()47

Fields

RESOLVABLE_AT_DESIGN_TIME

public static final java.lang.String RESOLVABLE_AT_DESIGN_TIME

The attribute name of the named attribute in the FeatureDescriptor that specifies whether the 
variable or property can be resolved at runtime.

TYPE

public static final java.lang.String TYPE

Member Summary

Fields
static

java.lang.String
RESOLVABLE_AT_DESIGN_TIME56

static
java.lang.String

TYPE56

Constructors
ELResolver()57

Methods
abstract

java.lang.Class
getCommonPropertyType(ELContext context, java.lang.Object 
base)57

abstract
java.util.Iterator

getFeatureDescriptors(ELContext context, java.lang.Object 
base)57

abstract
java.lang.Class

getType(ELContext context, java.lang.Object base, 
java.lang.Object property)58

abstract
java.lang.Object

getValue(ELContext context, java.lang.Object base, 
java.lang.Object property)59

abstract boolean isReadOnly(ELContext context, java.lang.Object base, 
java.lang.Object property)59

abstract void setValue(ELContext context, java.lang.Object base, 
java.lang.Object property, java.lang.Object value)60

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
56 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ELResolver

ELResolver()
The attribute name of the named attribute in the FeatureDescriptor that specifies the runtime type of 
the variable or property.

Constructors

ELResolver()

public ELResolver()

Methods

getCommonPropertyType(ELContext, Object)

public abstract java.lang.Class getCommonPropertyType(javax.el.ELContext46 context, 

java.lang.Object base)

Returns the most general type that this resolver accepts for the property argument, given a base object. 
One use for this method is to assist tools in auto-completion. 

This assists tools in auto-completion and also provides a way to express that the resolver accepts a primitive 
value, such as an integer index into an array. For example, the ArrayELResolver29 will accept any int 
as a property, so the return value would be Integer.class.

Parameters:
context - The context of this evaluation.

base - The base object to return the most general property type for, or null to enumerate the set of 
top-level variables that this resolver can evaluate.

Returns: null if this ELResolver does not know how to handle the given base object; otherwise 
Object.class if any type of property is accepted; otherwise the most general property type 
accepted for the given base.

getFeatureDescriptors(ELContext, Object)

public abstract java.util.Iterator getFeatureDescriptors(javax.el.ELContext46 context, 

java.lang.Object base)

Returns information about the set of variables or properties that can be resolved for the given base object. 
One use for this method is to assist tools in auto-completion. 

If the base parameter is null, the resolver must enumerate the list of top-level variables it can resolve.

The Iterator returned must contain zero or more instances of 
java.beans.FeatureDescriptor, in no guaranteed order. In the case of primitive types such as 
int, the value null must be returned. This is to prevent the useless iteration through all possible primitive 
values. A return value of null indicates that this resolver does not handle the given base object or that 
the results are too complex to represent with this method and the 
getCommonPropertyType(ELContext, Object)57 method should be used instead.

Each FeatureDescriptor will contain information about a single variable or property. In addition to 
the standard properties, the FeatureDescriptor must have two named attributes (as set by the 
setValue method): 

• TYPE56- The value of this named attribute must be an instance of java.lang.Class and specify 
javax.el ELResolver 57



ELResolver  javax.el

getType(ELContext, Object, Object)
the runtime type of the variable or property. 

• RESOLVABLE_AT_DESIGN_TIME56- The value of this named attribute must be an instance of 

java.lang.Boolean and indicates whether it is safe to attempt to resolve this property at design-
time. For instance, it may be unsafe to attempt a resolution at design time if the ELResolver needs 
access to a resource that is only available at runtime and no acceptable simulated value can be 
provided. 

The caller should be aware that the Iterator returned might iterate through a very large or even 
infinitely large set of properties. Care should be taken by the caller to not get stuck in an infinite loop.

This is a “best-effort” list. Not all ELResolvers will return completely accurate results, but all must be 
callable at both design-time and runtime (i.e. whether or not Beans.isDesignTime() returns true), 
without causing errors.

The propertyResolved property of the ELContext is not relevant to this method. The results of all 
ELResolvers are concatenated in the case of composite resolvers.

Parameters:
context - The context of this evaluation.

base - The base object whose set of valid properties is to be enumerated, or null to enumerate the set 
of top-level variables that this resolver can evaluate.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor 
objects, or null if this resolver does not handle the given base object or that the results are too 
complex to represent with this method

See Also: java.beans.FeatureDescriptor

getType(ELContext, Object, Object)

public abstract java.lang.Class getType(javax.el.ELContext46 context, 

java.lang.Object base, java.lang.Object property)

For a given base and property, attempts to identify the most general type that is acceptable for an 
object to be passed as the value parameter in a future call to the setValue(ELContext, Object, 
Object, Object)60 method. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller should ignore  the return value.

This is not always the same as getValue().getClass(). For example, in the case of an 
ArrayELResolver29, the getType method will return the element type of the array, which might be a 
superclass of the type of the actual element that is currently in the specified array element.

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be analyzed, or null to analyze a top-level 
variable.

property - The property or variable to return the acceptable type for.

Returns: If the propertyResolved property of ELContext was set to true, then the most general 
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null
58 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ELResolver

getValue(ELContext, Object, Object)
PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist or is not readable.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public abstract java.lang.Object getValue(javax.el.ELContext46 context, 

java.lang.Object base, java.lang.Object property)

Attempts to resolve the given property object on the given base object. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller should ignore  the return value.

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be returned, or null to resolve a top-level variable.

property - The property or variable to be resolved.

Returns: If the propertyResolved property of ELContext was set to true, then the result of the 
variable or property resolution; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist or is not readable.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public abstract boolean isReadOnly(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

For a given base and property, attempts to determine whether a call to setValue(ELContext, 
Object, Object, Object)60 will always fail. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller should ignore  the return value.

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be analyzed, or null to analyze a top-level 
variable.

property - The property or variable to return the read-only status for.

Returns: If the propertyResolved property of ELContext was set to true, then true if the 
property is read-only or false if not; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null
javax.el ELResolver 59



ELResolver  javax.el

setValue(ELContext, Object, Object, Object)
PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

setValue(ELContext, Object, Object, Object)

public abstract void setValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property, java.lang.Object value)

Attempts to set the value of the given property object on the given base object. 

If this resolver handles the given (base, property) pair, the propertyResolved property of the 
ELContext object must be set to true by the resolver, before returning. If this property is not true 
after this method is called, the caller can safely assume no value has been set.

Parameters:
context - The context of this evaluation.

base - The base object whose property value is to be set, or null to set a top-level variable.

property - The property or variable to be set.

value - The value to set the property or variable to.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property does not exist.

PropertyNotWritableException89 - if the given (base, property) pair is handled by this 
ELResolver but the specified variable or property is not writable.

ELException53 - if an exception was thrown while attempting to set the property or variable. The 
thrown exception must be included as the cause property of this exception, if available.
60 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el Expression

setValue(ELContext, Object, Object, Object)
javax.el

Expression
Declaration
public abstract class Expression implements java.io.Serializable
 
java.lang.Object

|
+--javax.el.Expression

All Implemented Interfaces: java.io.Serializable

Direct Known Subclasses: MethodExpression80, ValueExpression95

Description
Base class for the expression subclasses ValueExpression95 and MethodExpression80, implementing 
characterstics common to both. 

All expressions must implement the equals() and hashCode() methods so that two expressions can be 
compared for equality. They are redefined abstract in this class to force their implementation in subclasses.

All expressions must also be Serializable so that they can be saved and restored.

Expressions are also designed to be immutable so that only one instance needs to be created for any given 
expression String / FunctionMapper68. This allows a container to pre-create expressions and not have to re-
parse them each time they are evaluated.

Since: JSP 2.1

Member Summary

Constructors
Expression()62

Methods
abstract boolean equals(java.lang.Object obj)62

abstract
java.lang.String

getExpressionString()62

abstract int hashCode()62
abstract boolean isLiteralText()63

Inherited Member Summary

Methods inherited from class Object

clone(), finalize(), getClass(), notify(), notifyAll(), toString(), wait(), 
wait(long), wait(long, int)
javax.el Expression 61



Expression  javax.el

Expression()
Constructors

Expression()

public Expression()

Methods

equals(Object)

public abstract boolean equals(java.lang.Object obj)

Determines whether the specified object is equal to this Expression. 

The result is true if and only if the argument is not null, is an Expression object that is the of the 
same type (ValueExpression or MethodExpression), and has an identical parsed representation.

Note that two expressions can be equal if their expression Strings are different. For example, 
${fn1:foo()} and ${fn2:foo()} are equal if their corresponding FunctionMappers mapped 
fn1:foo and fn2:foo to the same method.

Overrides: equals in class Object

Parameters:
obj - the Object to test for equality.

Returns: true if obj equals this Expression; false otherwise.

See Also: java.util.Hashtable, java.lang.Object.equals(Object)

getExpressionString()

public abstract java.lang.String getExpressionString()

Returns the original String used to create this Expression, unmodified. 

This is used for debugging purposes but also for the purposes of comparison (e.g. to ensure the expression 
in a configuration file has not changed).

This method does not provide sufficient information to  re-create an expression. Two different expressions 
can have exactly the same expression string but different function mappings. Serialization should be used to 
save and restore the state of an Expression.

Returns: The original expression String.

hashCode()

public abstract int hashCode()

Returns the hash code for this Expression. 

See the note in the equals(Object)62 method on how two expressions can be equal if their expression 
Strings are different. Recall that if two objects are equal according to the equals(Object) method, then 
calling the hashCode method on each of the two objects must produce the same integer result. 
Implementations must take special note and implement hashCode correctly.

Overrides: hashCode in class Object
62 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el Expression

isLiteralText()
Returns: The hash code for this Expression.

See Also: equals(Object)62, java.util.Hashtable, java.lang.Object.hashCode()

isLiteralText()

public abstract boolean isLiteralText()

Returns whether this expression was created from only literal text. 

This method must return true if and only if the expression string this expression was created from 
contained no unescaped EL delimeters (${...} or #{...}).

Returns: true if this expression was created from only literal text; false otherwise.
javax.el Expression 63



ExpressionFactory  javax.el

isLiteralText()
javax.el

ExpressionFactory
Declaration
public abstract class ExpressionFactory
 
java.lang.Object

|
+--javax.el.ExpressionFactory

Description
Parses a String into a ValueExpression95 or MethodExpression80 instance for later evaluation. 

Classes that implement the EL expression language expose their functionality via this abstract class. There is no 
concrete implementation of this API available in this package. Technologies such as JavaServer Pages and 
JavaServer Faces provide access to an implementation via factory methods.

The createValueExpression(ELContext, String, Class)66 method is used to parse 
expressions that evaluate to values (both l-values and r-values are supported). The 
createMethodExpression(ELContext, String, Class, Class[])66 method is used to parse 
expressions that evaluate to a reference to a method on an object.

Unlike previous incarnations of this API, there is no way to parse and evaluate an expression in one single step. 
The expression needs to first be parsed, and then evaluated.

Resolution of model objects is performed at evaluation time, via the ELResolver55 associated with the 
ELContext46 passed to the ValueExpression or MethodExpression.

The ELContext object also provides access to the FunctionMapper68 and VariableMapper99 to be 
used when parsing the expression. EL function and variable mapping is performed at parse-time, and the results 
are bound to the expression. Therefore, the ELContext46, FunctionMapper68, and 
VariableMapper99 are not stored for future use and do not have to be Serializable.

The createValueExpression and createMethodExpression methods must be thread-safe. That is, 
multiple threads may call these methods on the same ExpressionFactory object simultaneously. 
Implementations should synchronize access if they depend on transient state. Implementations should not, 
however, assume that only one object of each ExpressionFactory type will be instantiated; global caching 
should therefore be static.

The ExpressionFactory must be able to handle the following types of input for the expression 
parameter: 

• Single expressions using the ${} delimiter (e.g. “${employee.lastName}”). 

• Single expressions using the #{} delimiter (e.g. “#{employee.lastName}”). 

• Literal text containing no ${} or #{} delimiters (e.g. “John Doe”). 

• Multiple expressions using the same delimiter (e.g. 
“${employee.firstName}${employee.lastName}” or 
“#{employee.firstName}#{employee.lastName}”). 

• Mixed literal text and expressions using the same delimiter (e.g. “Name: ${employee.firstName} 
${employee.lastName}”). 

The following types of input are illegal and must cause an ELException53 to be thrown: 
64 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ExpressionFactory

ExpressionFactory()
• Multiple expressions using different delimiters (e.g. 
“${employee.firstName}#{employee.lastName}”). 

• Mixed literal text and expressions using different delimiters(e.g. “Name: ${employee.firstName} 
#{employee.lastName}”). 

Since: JSP 2.1

Constructors

ExpressionFactory()

public ExpressionFactory()

Methods

coerceToType(Object, Class)

public abstract java.lang.Object coerceToType(java.lang.Object obj, 

java.lang.Class targetType)

Coerces an object to a specific type according to the EL type conversion rules. 

An ELException is thrown if an error results from applying the conversion rules. 

Member Summary

Constructors
ExpressionFactory()65

Methods
abstract

java.lang.Object
coerceToType(java.lang.Object obj, java.lang.Class 
targetType)65

abstract
MethodExpression

createMethodExpression(ELContext context, java.lang.String 
expression, java.lang.Class expectedReturnType, 
java.lang.Class[] expectedParamTypes)66

abstract
ValueExpression

createValueExpression(ELContext context, java.lang.String 
expression, java.lang.Class expectedType)66

abstract
ValueExpression

createValueExpression(java.lang.Object instance, 
java.lang.Class expectedType)67

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
javax.el ExpressionFactory 65



ExpressionFactory  javax.el

createMethodExpression(ELContext, String, Class, Class[])
Parameters:
obj - The object to coerce.

targetType - The target type for the coercion.

Throws:
ELException53 - thrown if an error results from applying the conversion rules.

createMethodExpression(ELContext, String, Class, Class[])

public abstract javax.el.MethodExpression80 createMethodExpression(javax.el.ELContext46 

context, java.lang.String expression, java.lang.Class expectedReturnType, 

java.lang.Class[] expectedParamTypes)

Parses an expression into a MethodExpression80 for later evaluation. Use this method for expressions 
that refer to methods. 

If the expression is a String literal, a MethodExpression  is created, which when invoked, returns the 
String literal, coerced to expectedReturnType. An ELException is thrown if expectedReturnType is void or 
if the coercion of the String literal to the expectedReturnType yields an error (see Section “1.16 Type 
Conversion”). 

This method should perform syntactic validation of the expression. If in doing so it detects errors, it should 
raise an ELException.

Parameters:
context - The EL context used to parse the expression. The FunctionMapper and 
VariableMapper stored in the ELContext are used to resolve functions and variables found in the 
expression. They can be null, in which case functions or variables are not supported for this 
expression. The object returned must invoke the same functions and access the same variable mappings 
regardless of whether the mappings in the provided FunctionMapper and VariableMapper 
instances change between calling ExpressionFactory.createMethodExpression() and 
any method on MethodExpression. 

Note that within the EL, the ${} and #{} syntaxes are treated identically. This includes the use of 
VariableMapper and FunctionMapper at expression creation time. Each is invoked if not null, 
independent of whether the #{} or ${} syntax is used for the expression.

expression - The expression to parse

expectedReturnType - The expected return type for the method to be found. After evaluating the 
expression, the MethodExpression must check that the return type of the actual method matches 
this type. Passing in a value of null indicates the caller does not care what the return type is, and the 
check is disabled.

expectedParamTypes - The expected parameter types for the method to be found. Must be an 
array with no elements if there are no parameters expected. It is illegal to pass null.

Returns: The parsed expression

Throws:
ELException53 - Thrown if there are syntactical errors in the provided expression.

java.lang.NullPointerException - if paramTypes is null.

createValueExpression(ELContext, String, Class)

public abstract javax.el.ValueExpression95 createValueExpression(javax.el.ELContext46 

context, java.lang.String expression, java.lang.Class expectedType)
66 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ExpressionFactory

createValueExpression(Object, Class)
Parses an expression into a ValueExpression95 for later evaluation. Use this method for expressions 
that refer to values. 

This method should perform syntactic validation of the expression. If in doing so it detects errors, it should 
raise an ELException.

Parameters:
context - The EL context used to parse the expression. The FunctionMapper and 
VariableMapper stored in the ELContext are used to resolve functions and variables found in the 
expression. They can be null, in which case functions or variables are not supported for this 
expression. The object returned must invoke the same functions and access the same variable mappings 
regardless of whether the mappings in the provided FunctionMapper and VariableMapper 
instances change between calling ExpressionFactory.createValueExpression() and 
any method on ValueExpression. 

Note that within the EL, the ${} and #{} syntaxes are treated identically. This includes the use of 
VariableMapper and FunctionMapper at expression creation time. Each is invoked if not null, 
independent of whether the #{} or ${} syntax is used for the expression.

expression - The expression to parse

expectedType - The type the result of the expression will be coerced to after evaluation.

Returns: The parsed expression

Throws:
java.lang.NullPointerException - Thrown if expectedType is null.

ELException53 - Thrown if there are syntactical errors in the provided expression.

createValueExpression(Object, Class)

public abstract javax.el.ValueExpression95 createValueExpression(java.lang.Object 

instance, java.lang.Class expectedType)

Creates a ValueExpression that wraps an object instance. This method can be used to pass any object as a 
ValueExpression. The wrapper ValueExpression is read only, and returns the wrapped object via its 
getValue() method, optionally coerced.

Parameters:
instance - The object instance to be wrapped.

expectedType - The type the result of the expression will be coerced to after evaluation. There will 
be no coercion if it is Object.class,
javax.el ExpressionFactory 67



FunctionMapper  javax.el

FunctionMapper()
javax.el

FunctionMapper
Declaration
public abstract class FunctionMapper
 
java.lang.Object

|
+--javax.el.FunctionMapper

Description
The interface to a map between EL function names and methods. 

A FunctionMapper maps ${prefix:name()} style functions to a static method that can execute that 
function.

Since: JSP 2.1

Constructors

FunctionMapper()

public FunctionMapper()

Member Summary

Constructors
FunctionMapper()68

Methods
abstract

java.lang.reflect.Meth
od

resolveFunction(java.lang.String prefix, java.lang.String 
localName)69

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
68 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el FunctionMapper

resolveFunction(String, String)
Methods

resolveFunction(String, String)

public abstract java.lang.reflect.Method resolveFunction(java.lang.String prefix, 

java.lang.String localName)

Resolves the specified prefix and local name into a java.lang.Method. 

Returns null if no function could be found that matches the given prefix and local name.

Parameters:
prefix - the prefix of the function, or “” if no prefix. For example, “fn” in ${fn:method()}, or 
“” in ${method()}.

localName - the short name of the function. For example, “method” in ${fn:method()}.

Returns: the static method to invoke, or null if no match was found.
javax.el FunctionMapper 69



ListELResolver  javax.el

resolveFunction(String, String)
javax.el

ListELResolver
Declaration
public class ListELResolver extends ELResolver55
 
java.lang.Object

|
+--javax.el.ELResolver55

|
+--javax.el.ListELResolver

Description
Defines property resolution behavior on instances of java.util.List. 

This resolver handles base objects of type java.util.List. It accepts any object as a property and coerces 
that object into an integer index into the list. The resulting value is the value in the list at that index.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true 
and setValue(ELContext, Object, Object, Object)74 will always throw 
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver39s, to define rich semantics for 
evaluating an expression. See the javadocs for ELResolver55 for details.

Since: JSP 2.1

See Also: CompositeELResolver39, ELResolver55, java.util.List

Member Summary

Constructors
ListELResolver()71
ListELResolver(boolean isReadOnly)71

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object 

base)71
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object 

base)71
 java.lang.Class getType(ELContext context, java.lang.Object base, 

java.lang.Object property)72
 java.lang.Object getValue(ELContext context, java.lang.Object base, 

java.lang.Object property)72
 boolean isReadOnly(ELContext context, java.lang.Object base, 

java.lang.Object property)73
 void setValue(ELContext context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)74
70 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ListELResolver

ListELResolver()
Constructors

ListELResolver()

public ListELResolver()

Creates a new read/write ListELResolver.

ListELResolver(boolean)

public ListELResolver(boolean isReadOnly)

Creates a new ListELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify lists; false otherwise.

Methods

getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is a list, returns the most general type that this resolver accepts for the property 
argument. Otherwise, returns null. 

Assuming the base is a List, this method will always return Integer.class. This is because Lists 
accept integers as their index.

Overrides: getCommonPropertyType57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The list to analyze. Only bases of type List are handled by this resolver.

Returns: null if base is not a List; otherwise Integer.class.

getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext46 context, 

java.lang.Object base)

Always returns null, since there is no reason to iterate through set set of all integers. 

Inherited Member Summary

Fields inherited from class ELResolver55

RESOLVABLE_AT_DESIGN_TIME56, TYPE56

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
javax.el ListELResolver 71



ListELResolver  javax.el

getType(ELContext, Object, Object)
The getCommonPropertyType(ELContext, Object)71 method returns sufficient information 
about what properties this resolver accepts.

Overrides: getFeatureDescriptors57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The list. Only bases of type List are handled by this resolver.

Returns: null.

getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is a list, returns the most general acceptable type for a value in this list. 

If the base is a List, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller should 
ignore the return value.

Assuming the base is a List, this method will always return Object.class. This is because Lists 
accept any object as an element.

Overrides: getType58 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The list to analyze. Only bases of type List are handled by this resolver.

property - The index of the element in the list to return the acceptable type for. Will be coerced into 
an integer, but otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then the most general 
acceptable type; otherwise undefined.

Throws:
PropertyNotFoundException87 - if the given index is out of bounds for this list.

java.lang.NullPointerException - if context is null

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is a list, returns the value at the given index. The index is specified by the property 
argument, and coerced into an integer. If the coercion could not be performed, an 
IllegalArgumentException is thrown. If the index is out of bounds, null is returned. 

If the base is a List, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller should 
ignore the return value.

Overrides: getValue59 in class ELResolver55
72 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ListELResolver

isReadOnly(ELContext, Object, Object)
Parameters:
context - The context of this evaluation.

base - The list to be analyzed. Only bases of type List are handled by this resolver.

property - The index of the value to be returned. Will be coerced  into an integer.

Returns: If the propertyResolved property of ELContext was set to true, then the value at the 
given index or null if the index was out of bounds. Otherwise, undefined.

Throws:
java.lang.IllegalArgumentException - if the property could not be coerced into an 
integer.

java.lang.NullPointerException - if context is null.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is a list, returns whether a call to setValue(ELContext, Object, Object, 
Object)74 will always fail. 

If the base is a List, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller should 
ignore the return value.

If this resolver was constructed in read-only mode, this method will always return true.

If a List was created using java.util.Collections.unmodifiableList(List), this 
method must return true. Unfortunately, there is no Collections API method to detect this. However, an 
implementation can create a prototype unmodifiable List and query its runtime type to see if it matches 
the runtime type of the base object as a workaround.

Overrides: isReadOnly59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The list to analyze. Only bases of type List are handled by this resolver.

property - The index of the element in the list to return the acceptable type for. Will be coerced into 
an integer, but otherwise ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then true if calling 
the setValue method will always fail or false if it is possible that such a call may succeed; 
otherwise undefined.

Throws:
PropertyNotFoundException87 - if the given index is out of bounds for this list.

java.lang.NullPointerException - if context is null

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.
javax.el ListELResolver 73



ListELResolver  javax.el

setValue(ELContext, Object, Object, Object)
setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)

If the base object is a list, attempts to set the value at the given index with the given value. The index is 
specified by the property argument, and coerced into an integer. If the coercion could not be performed, 
an IllegalArgumentException is thrown. If the index is out of bounds, a 
PropertyNotFoundException is thrown. 

If the base is a List, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller can 
safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw 
PropertyNotWritableException.

If a List was created using java.util.Collections.unmodifiableList(List), this 
method must throw PropertyNotWritableException. Unfortunately, there is no Collections API 
method to detect this. However, an implementation can create a prototype unmodifiable List and query its 
runtime type to see if it matches the runtime type of the base object as a workaround.

Overrides: setValue60 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The list to be modified. Only bases of type List are handled by this resolver.

property - The index of the value to be set. Will be coerced into an integer.

val - The value to be set at the given index.

Throws:
java.lang.ClassCastException - if the class of the specified element prevents it from being 
added to this list.

java.lang.NullPointerException - if context is null, or if the value is null and this 
List does not support null elements.

java.lang.IllegalArgumentException - if the property could not be coerced into an 
integer, or if some aspect of the specified element prevents it from being added to this list.

PropertyNotWritableException89 - if this resolver was constructed in read-only mode, or if 
the set operation is not supported by the underlying list.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.
74 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el MapELResolver

setValue(ELContext, Object, Object, Object)
javax.el

MapELResolver
Declaration
public class MapELResolver extends ELResolver55
 
java.lang.Object

|
+--javax.el.ELResolver55

|
+--javax.el.MapELResolver

Description
Defines property resolution behavior on instances of java.util.Map. 

This resolver handles base objects of type java.util.Map. It accepts any object as a property and uses that 
object as a key in the map. The resulting value is the value in the map that is associated with that key.

This resolver can be constructed in read-only mode, which means that isReadOnly will always return true 
and setValue(ELContext, Object, Object, Object)79 will always throw 
PropertyNotWritableException.

ELResolvers are combined together using CompositeELResolver39s, to define rich semantics for 
evaluating an expression. See the javadocs for ELResolver55 for details.

Since: JSP 2.1

See Also: CompositeELResolver39, ELResolver55, java.util.Map

Member Summary

Constructors
MapELResolver()76
MapELResolver(boolean isReadOnly)76

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object 

base)76
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object 

base)76
 java.lang.Class getType(ELContext context, java.lang.Object base, 

java.lang.Object property)77
 java.lang.Object getValue(ELContext context, java.lang.Object base, 

java.lang.Object property)77
 boolean isReadOnly(ELContext context, java.lang.Object base, 

java.lang.Object property)78
 void setValue(ELContext context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)79
javax.el MapELResolver 75



MapELResolver  javax.el

MapELResolver()
Constructors

MapELResolver()

public MapELResolver()

Creates a new read/write MapELResolver.

MapELResolver(boolean)

public MapELResolver(boolean isReadOnly)

Creates a new MapELResolver whose read-only status is determined by the given parameter.

Parameters:
isReadOnly - true if this resolver cannot modify maps; false otherwise.

Methods

getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is a map, returns the most general type that this resolver accepts for the property 
argument. Otherwise, returns null. 

Assuming the base is a Map, this method will always return Object.class. This is because Maps accept 
any object as a key.

Overrides: getCommonPropertyType57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The map to analyze. Only bases of type Map are handled by this resolver.

Returns: null if base is not a Map; otherwise Object.class.

getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is a map, returns an Iterator containing the set of keys available in the Map. 
Otherwise, returns null. 

Inherited Member Summary

Fields inherited from class ELResolver55

RESOLVABLE_AT_DESIGN_TIME56, TYPE56

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
76 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el MapELResolver

getType(ELContext, Object, Object)
The Iterator returned must contain zero or more instances of 
java.beans.FeatureDescriptor. Each info object contains information about a key in the Map, 
and is initialized as follows: 

displayName - The return value of calling the toString method on this key, or “null” if the key is 
null. name - Same as displayName property. shortDescription - Empty string expert - false hidden - 
false preferred - true 

In addition, the following named attributes must be set in the returned FeatureDescriptors: 

ELResolver.TYPE56 - The return value of calling the getClass() method on this key, or null if 
the key is null. ELResolver.RESOLVABLE_AT_DESIGN_TIME56 - true 

Overrides: getFeatureDescriptors57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The map whose keys are to be iterated over. Only bases  of type Map are handled by this 
resolver.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor 
objects, each representing a key in this map, or null if the base object is not a map.

getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is a map, returns the most general acceptable type for a value in this map. 

If the base is a Map, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller should 
ignore the return value.

Assuming the base is a Map, this method will always return Object.class. This is because Maps accept 
any object as the value for a given key.

Overrides: getType58 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The map to analyze. Only bases of type Map are handled by this resolver.

property - The key to return the acceptable type for. Ignored by this resolver.

Returns: If the propertyResolved property of ELContext was set to true, then the most general 
acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)
javax.el MapELResolver 77



MapELResolver  javax.el

isReadOnly(ELContext, Object, Object)
If the base object is a map, returns the value associated with the given key, as specified by the property 
argument. If the key was not found, null is returned. 

If the base is a Map, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller should 
ignore the return value.

Just as in java.util.Map.get(Object), just because null is returned doesn’t mean there is no 
mapping for the key; it’s also possible that the Map explicitly maps the key to null.

Overrides: getValue59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The map to be analyzed. Only bases of type Map are handled by this resolver.

property - The key whose associated value is to be returned.

Returns: If the propertyResolved property of ELContext was set to true, then the value 
associated with the given key or null if the key was not found. Otherwise, undefined.

Throws:
java.lang.ClassCastException - if the key is of an inappropriate type for this map 
(optionally thrown by the underlying Map).

java.lang.NullPointerException - if context is null, or if the key is null and this map 
does not permit null keys (the latter is optionally thrown by the underlying Map).

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is a map, returns whether a call to  setValue(ELContext, Object, Object, 
Object)79 will always fail. 

If the base is a Map, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller should 
ignore the return value.

If this resolver was constructed in read-only mode, this method will always return true.

If a Map was created using java.util.Collections.unmodifiableMap(Map), this method 
must return true. Unfortunately, there is no Collections API method to detect this. However, an 
implementation can create a prototype unmodifiable Map and query its runtime type to see if it matches the 
runtime type of the base object as a workaround.

Overrides: isReadOnly59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The map to analyze. Only bases of type Map are handled by this resolver.

property - The key to return the read-only status for. Ignored by this resolver.
78 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el MapELResolver

setValue(ELContext, Object, Object, Object)
Returns: If the propertyResolved property of ELContext was set to true, then true if calling 
the setValue method will always fail or false if it is possible that such a call may succeed; 
otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property, java.lang.Object val)

If the base object is a map, attempts to set the value associated with the given key, as specified by the 
property argument. 

If the base is a Map, the propertyResolved property of the ELContext object must be set to true 
by this resolver, before returning. If this property is not true after this method is called, the caller can 
safely assume no value was set.

If this resolver was constructed in read-only mode, this method will always throw 
PropertyNotWritableException.

If a Map was created using java.util.Collections.unmodifiableMap(Map), this method 
must throw PropertyNotWritableException. Unfortunately, there is no Collections API method 
to detect this. However, an implementation can create a prototype unmodifiable Map and query its runtime 
type to see if it matches the runtime type of the base object as a workaround.

Overrides: setValue60 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The map to be modified. Only bases of type Map are handled by this resolver.

property - The key with which the specified value is to be associated.

val - The value to be associated with the specified key.

Throws:
java.lang.ClassCastException - if the class of the specified key or value prevents it from 
being stored in this map.

java.lang.NullPointerException - if context is null, or if this map does not permit null 
keys or values, and the specified key or value is null.

java.lang.IllegalArgumentException - if some aspect of this key or value prevents it 
from being stored in this map.

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

PropertyNotWritableException89 - if this resolver was constructed in read-only mode, or if 
the put operation is not supported by the underlying map.
javax.el MapELResolver 79



MethodExpression  javax.el

setValue(ELContext, Object, Object, Object)
javax.el

MethodExpression
Declaration
public abstract class MethodExpression extends Expression61
 
java.lang.Object

|
+--javax.el.Expression61

|
+--javax.el.MethodExpression

All Implemented Interfaces: java.io.Serializable

Description
An Expression that refers to a method on an object. 

The ExpressionFactory.createMethodExpression(ELContext, String, Class, 
Class[])66 method can be used to parse an expression string and return a concrete instance of 
MethodExpression that encapsulates the parsed expression. The FunctionMapper68 
is used at parse time, not evaluation time, so one is not needed to evaluate an expression using this class.  
However, the ELContext46 is needed at evaluation time.

The getMethodInfo(ELContext)81 and invoke(ELContext, Object[])81 methods will 
evaluate the expression each time they are called. The ELResolver55 in the ELContext is used to 
resolve the top-level variables and to determine the behavior of the . and 
[] operators. For any of the two methods, the 
ELResolver.getValue(ELContext, Object, Object)59 method is used to resolve all properties 
up to but excluding the last one. This provides the base object on which the method appears. 
If the base object is null, a PropertyNotFoundException must be thrown. At 
the last resolution, the final property is then coerced to a String, which 
provides the name of the method to be found. A method matching the name and 
expected parameters provided at parse time is found and it is either 
queried or invoked (depending on the method called on this 
MethodExpression).

See the notes about comparison, serialization and immutability in the Expression61 javadocs.

Since: JSP 2.1

See Also: ELResolver55, Expression61, ExpressionFactory64

Member Summary

Constructors
MethodExpression()81

Methods
abstract MethodInfo getMethodInfo(ELContext context)81
80 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el MethodExpression

MethodExpression()
Constructors

MethodExpression()

public MethodExpression()

Methods

getMethodInfo(ELContext)

public abstract javax.el.MethodInfo83 getMethodInfo(javax.el.ELContext46 context)

Evaluates the expression relative to the provided context, and returns information about the actual 
referenced method.

Parameters:
context - The context of this evaluation

Returns: an instance of MethodInfo containing information about the method the expression evaluated 
to.

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if one of the property resolutions failed because a specified 
variable or property does not exist or is not readable.

MethodNotFoundException85 - if no suitable method can be found.

ELException53 - if an exception was thrown while performing property or variable resolution. The 
thrown exception must be included as the cause property of this exception, if available.

invoke(ELContext, Object[])

public abstract java.lang.Object invoke(javax.el.ELContext46 context, 

java.lang.Object[] params)

abstract
java.lang.Object

invoke(ELContext context, java.lang.Object[] params)81

Inherited Member Summary

Methods inherited from class Expression61

equals(Object)62, getExpressionString()62, hashCode()62, isLiteralText()63

Methods inherited from class Object

clone(), finalize(), getClass(), notify(), notifyAll(), toString(), wait(), 
wait(long), wait(long, int)

Member Summary
javax.el MethodExpression 81



MethodExpression  javax.el

invoke(ELContext, Object[])
If a String literal is specified as the expression, returns the String literal coerced to the expected return type 
of the method signature. An ELException is thrown if expectedReturnType is void or if the 
coercion of the String literal to the expectedReturnType yields an error (see Section “1.16 Type 
Conversion” of the EL specification). If not a String literal, evaluates the expression relative to the provided 
context, invokes the method that was found using the supplied parameters, and returns the result of the 
method invocation. Any parameters passed to this method is ignored if isLiteralText() is true.

Parameters:
context - The context of this evaluation.

params - The parameters to pass to the method, or null if no parameters.

Returns: the result of the method invocation (null if the method has a void return type).

Throws:
java.lang.NullPointerException - if context is null

PropertyNotFoundException87 - if one of the property resolutions failed because a specified 
variable or property does not exist or is not readable.

MethodNotFoundException85 - if no suitable method can be found.

ELException53 - if a String literal is specified and expectedReturnType of the MethodExpression is 
void or if the coercion of the String literal to the expectedReturnType yields an error (see Section “1.16 
Type Conversion”).

ELException53 - if an exception was thrown while performing property or variable resolution. The 
thrown exception must be included as the cause property of this exception, if available. If the exception 
thrown is an InvocationTargetException, extract its cause and pass it to the 
ELException constructor.
82 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el MethodInfo

MethodInfo(String, Class, Class[])
javax.el

MethodInfo
Declaration
public class MethodInfo
 
java.lang.Object

|
+--javax.el.MethodInfo

Description
Holds information about a method that a MethodExpression80 evaluated to.

Since: JSP 2.1

Constructors

MethodInfo(String, Class, Class[])

public MethodInfo(java.lang.String name, java.lang.Class returnType, 

java.lang.Class[] paramTypes)

Creates a new instance of MethodInfo with the given information.

Parameters:
name - The name of the method

returnType - The return type of the method

Member Summary

Constructors
MethodInfo(java.lang.String name, java.lang.Class returnType, 
java.lang.Class[] paramTypes)83

Methods
 java.lang.String getName()84
 java.lang.Class[] getParamTypes()84
 java.lang.Class getReturnType()84

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
javax.el MethodInfo 83



MethodInfo  javax.el

getName()
paramTypes - The types of each of the method’s parameters

Methods

getName()

public java.lang.String getName()

Returns the name of the method

Returns: the name of the method

getParamTypes()

public java.lang.Class[] getParamTypes()

Returns the parameter types of the method

Returns: the parameter types of the method

getReturnType()

public java.lang.Class getReturnType()

Returns the return type of the method

Returns: the return type of the method
84 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el MethodNotFoundException

getReturnType()
javax.el

MethodNotFoundException
Declaration
public class MethodNotFoundException extends ELException53
 
java.lang.Object

|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException53

|
+--javax.el.MethodNotFoundException

All Implemented Interfaces: java.io.Serializable

Description
Thrown when a method could not be found while evaluating a MethodExpression80.

Since: JSP 2.1

See Also: MethodExpression80

Member Summary

Constructors
MethodNotFoundException()86
MethodNotFoundException(java.lang.String message)86
MethodNotFoundException(java.lang.String pMessage, 
java.lang.Throwable pRootCause)86
MethodNotFoundException(java.lang.Throwable exception)86

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(), 
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream), 
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
javax.el MethodNotFoundException 85



MethodNotFoundException  javax.el

MethodNotFoundException()
Constructors

MethodNotFoundException()

public MethodNotFoundException()

Creates a MethodNotFoundException with no detail message.

MethodNotFoundException(String)

public MethodNotFoundException(java.lang.String message)

Creates a MethodNotFoundException with the provided detail message.

Parameters:
message - the detail message

MethodNotFoundException(Throwable)

public MethodNotFoundException(java.lang.Throwable exception)

Creates a MethodNotFoundException with the given root cause.

Parameters:
exception - the originating cause of this exception

MethodNotFoundException(String, Throwable)

public MethodNotFoundException(java.lang.String pMessage, 

java.lang.Throwable pRootCause)

Creates a MethodNotFoundException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception
86 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el PropertyNotFoundException

MethodNotFoundException(String, Throwable)
javax.el

PropertyNotFoundException
Declaration
public class PropertyNotFoundException extends ELException53
 
java.lang.Object

|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException53

|
+--javax.el.PropertyNotFoundException

All Implemented Interfaces: java.io.Serializable

Description
Thrown when a property could not be found while evaluating a ValueExpression95 or 
MethodExpression80. 

For example, this could be triggered by an index out of bounds while setting an array value, or by an unreadable 
property while getting the value of a JavaBeans property.

Since: JSP 2.1

Member Summary

Constructors
PropertyNotFoundException()88
PropertyNotFoundException(java.lang.String message)88
PropertyNotFoundException(java.lang.String pMessage, 
java.lang.Throwable pRootCause)88
PropertyNotFoundException(java.lang.Throwable exception)88

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable
javax.el PropertyNotFoundException 87



PropertyNotFoundException  javax.el

PropertyNotFoundException()
Constructors

PropertyNotFoundException()

public PropertyNotFoundException()

Creates a PropertyNotFoundException with no detail message.

PropertyNotFoundException(String)

public PropertyNotFoundException(java.lang.String message)

Creates a PropertyNotFoundException with the provided detail message.

Parameters:
message - the detail message

PropertyNotFoundException(Throwable)

public PropertyNotFoundException(java.lang.Throwable exception)

Creates a PropertyNotFoundException with the given root cause.

Parameters:
exception - the originating cause of this exception

PropertyNotFoundException(String, Throwable)

public PropertyNotFoundException(java.lang.String pMessage, 

java.lang.Throwable pRootCause)

Creates a PropertyNotFoundException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(), 
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream), 
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()

Inherited Member Summary
88 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el PropertyNotWritableException

PropertyNotFoundException(String, Throwable)
javax.el

PropertyNotWritableException
Declaration
public class PropertyNotWritableException extends ELException53
 
java.lang.Object

|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javax.el.ELException53

|
+--javax.el.PropertyNotWritableException

All Implemented Interfaces: java.io.Serializable

Description
Thrown when a property could not be written to while setting the value on a ValueExpression95. 

For example, this could be triggered by trying to set a map value on an unmodifiable map.

Since: JSP 2.1

Member Summary

Constructors
PropertyNotWritableException()90
PropertyNotWritableException(java.lang.String pMessage)90
PropertyNotWritableException(java.lang.String pMessage, 
java.lang.Throwable pRootCause)90
PropertyNotWritableException(java.lang.Throwable exception)90

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
wait(), wait(long), wait(long, int)

Methods inherited from class Throwable

fillInStackTrace(), getCause(), getLocalizedMessage(), getMessage(), getStackTrace(), 
initCause(Throwable), printStackTrace(), printStackTrace(PrintStream), 
printStackTrace(PrintWriter), setStackTrace(StackTraceElement[]), toString()
javax.el PropertyNotWritableException 89



PropertyNotWritableException  javax.el

PropertyNotWritableException()
Constructors

PropertyNotWritableException()

public PropertyNotWritableException()

Creates a PropertyNotWritableException with no detail message.

PropertyNotWritableException(String)

public PropertyNotWritableException(java.lang.String pMessage)

Creates a PropertyNotWritableException with the provided detail message.

Parameters:
pMessage - the detail message

PropertyNotWritableException(Throwable)

public PropertyNotWritableException(java.lang.Throwable exception)

Creates a PropertyNotWritableException with the given root cause.

Parameters:
exception - the originating cause of this exception

PropertyNotWritableException(String, Throwable)

public PropertyNotWritableException(java.lang.String pMessage, 

java.lang.Throwable pRootCause)

Creates a PropertyNotWritableException with the given detail message and root cause.

Parameters:
pMessage - the detail message

pRootCause - the originating cause of this exception
90 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ResourceBundleELResolver

PropertyNotWritableException(String, Throwable)
javax.el

ResourceBundleELResolver
Declaration
public class ResourceBundleELResolver extends ELResolver55
 
java.lang.Object

|
+--javax.el.ELResolver55

|
+--javax.el.ResourceBundleELResolver

Description
Defines property resolution behavior on instances of java.util.ResourceBundle. 

This resolver handles base objects of type java.util.ResourceBundle. It accepts any object as a 
property and coerces it to a java.lang.String for invoking 
java.util.ResourceBundle.getObject(String). 

This resolver is read only and will throw a PropertyNotWritableException89 if setValue is called. 

ELResolvers are combined together using CompositeELResolver39s, to define rich semantics for 
evaluating an expression. See the javadocs for ELResolver55 for details. 

Since: JSP 2.1

See Also: CompositeELResolver39, ELResolver55, java.util.ResourceBundle

Member Summary

Constructors
ResourceBundleELResolver()92

Methods
 java.lang.Class getCommonPropertyType(ELContext context, java.lang.Object 

base)92
 java.util.Iterator getFeatureDescriptors(ELContext context, java.lang.Object 

base)92
 java.lang.Class getType(ELContext context, java.lang.Object base, 

java.lang.Object property)93
 java.lang.Object getValue(ELContext context, java.lang.Object base, 

java.lang.Object property)93
 boolean isReadOnly(ELContext context, java.lang.Object base, 

java.lang.Object property)94
 void setValue(ELContext context, java.lang.Object base, 

java.lang.Object property, java.lang.Object value)94
javax.el ResourceBundleELResolver 91



ResourceBundleELResolver  javax.el

ResourceBundleELResolver()
Constructors

ResourceBundleELResolver()

public ResourceBundleELResolver()

Methods

getCommonPropertyType(ELContext, Object)

public java.lang.Class getCommonPropertyType(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is a ResourceBundle, returns the most general type that this resolver accepts for the 
property argument. Otherwise, returns null. 

Assuming the base is a ResourceBundle, this method will always return String.class.

Overrides: getCommonPropertyType57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The bundle to analyze. Only bases of type ResourceBundle are handled by this resolver.

Returns: null if base is not a ResourceBundle; otherwise String.class.

getFeatureDescriptors(ELContext, Object)

public java.util.Iterator getFeatureDescriptors(javax.el.ELContext46 context, 

java.lang.Object base)

If the base object is a ResourceBundle, returns an Iterator containing the set of keys available in the 
ResourceBundle. Otherwise, returns null. 

The Iterator returned must contain zero or more instances of 
java.beans.FeatureDescriptor. Each info object contains information about a key in the 
ResourceBundle, and is initialized as follows: 

displayName - The String key name - Same as displayName property. shortDescription - Empty string 
expert - false hidden - false preferred - true 

In addition, the following named attributes must be set in the returned FeatureDescriptors: 

ELResolver.TYPE56 - String.class ELResolver.RESOLVABLE_AT_DESIGN_TIME56 - 
true 

Inherited Member Summary

Fields inherited from class ELResolver55

RESOLVABLE_AT_DESIGN_TIME56, TYPE56

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
92 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ResourceBundleELResolver

getType(ELContext, Object, Object)
Overrides: getFeatureDescriptors57 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The bundle whose keys are to be iterated over. Only bases of type ResourceBundle are 
handled by this resolver.

Returns: An Iterator containing zero or more (possibly infinitely more) FeatureDescriptor 
objects, each representing a key in this bundle, or null if the base object is not a ResourceBundle.

getType(ELContext, Object, Object)

public java.lang.Class getType(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is an instance of ResourceBundle, return null, since the resolver is read only. 

If the base is ResourceBundle, the propertyResolved property of the ELContext object must 
be set to true by this resolver, before returning. If this property is not true after this method is called, the 
caller should ignore the return value. 

Overrides: getType58 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to analyze.

property - The name of the property to analyze.

Returns: If the propertyResolved property of ELContext was set to true, then null; otherwise 
undefined.

Throws:
java.lang.NullPointerException - if context is null

getValue(ELContext, Object, Object)

public java.lang.Object getValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is an instance of ResourceBundle, the provided property will first be coerced to a 
String. The Object returned by getObject on the base ResourceBundle will be returned. 

If the base is ResourceBundle, the propertyResolved property of the ELContext object must 
be set to true by this resolver, before returning. If this property is not true after this method is called, the 
caller should ignore the return value. 

Overrides: getValue59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to analyze.

property - The name of the property to analyze. Will be coerced to a String.

Returns: If the propertyResolved property of ELContext was set to true, then null if property 
is null; otherwise the Object for the given key (property coerced to String) from the 
ResourceBundle. If no object for the given key can be found, then the String “???” + key + 
“???”.
javax.el ResourceBundleELResolver 93



ResourceBundleELResolver  javax.el

isReadOnly(ELContext, Object, Object)
Throws:
java.lang.NullPointerException - if context is null

ELException53 - if an exception was thrown while performing the property or variable resolution. 
The thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext, Object, Object)

public boolean isReadOnly(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property)

If the base object is not null and an instanceof java.util.ResourceBundle, return true.

Overrides: isReadOnly59 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to be modified. Only bases that are of type ResourceBundle are handled.

property - The String property to use.

Returns: If the propertyResolved property of ELContext was set to true, then true; otherwise 
undefined.

Throws:
java.lang.NullPointerException - if context is null

setValue(ELContext, Object, Object, Object)

public void setValue(javax.el.ELContext46 context, java.lang.Object base, 

java.lang.Object property, java.lang.Object value)

If the base object is a ResourceBundle, throw a PropertyNotWritableException89.

Overrides: setValue60 in class ELResolver55

Parameters:
context - The context of this evaluation.

base - The ResourceBundle to be modified. Only bases that are of type ResourceBundle are handled.

property - The String property to use.

value - The value to be set.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotWritableException89 - Always thrown if base is an instance of 
ReasourceBundle.
94 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ValueExpression

setValue(ELContext, Object, Object, Object)
javax.el

ValueExpression
Declaration
public abstract class ValueExpression extends Expression61
 
java.lang.Object

|
+--javax.el.Expression61

|
+--javax.el.ValueExpression

All Implemented Interfaces: java.io.Serializable

Description
An Expression that can get or set a value. 

In previous incarnations of this API, expressions could only be read. ValueExpression objects can now be 
used both to retrieve a value and to set a value. Expressions that can have a value set on them are referred to as 
l-value expressions. Those that cannot are referred to as r-value expressions. Not all r-value expressions can be 
used as l-value expressions (e.g. “${1+1}” or “${firstName} ${lastName}”). See the EL 
Specification for details. Expressions that cannot be used as l-values must always return true from 
isReadOnly().

The ExpressionFactory.createValueExpression(ELContext, String, Class)66 
method can be used to parse an expression string and return a concrete instance of ValueExpression that 
encapsulates the parsed expression. The FunctionMapper68 is used at parse time, not 
evaluation time, so one is not needed to evaluate an expression using this class.  However, the ELContext46 is 
needed at evaluation time.

The getValue(ELContext)97, setValue(ELContext, Object)98, 
isReadOnly(ELContext)97 and getType(ELContext)96 methods will evaluate the expression each 
time they are called. The ELResolver55 in the ELContext is used to resolve the top-level 
variables and to determine the behavior of the . and [] operators. For any 
of the four methods, the ELResolver.getValue(ELContext, Object, Object)59 
method is used to resolve all properties up to but excluding the last one. This provides the base object. At 
the last resolution, the ValueExpression will call the corresponding 
ELResolver.getValue(ELContext, Object, Object)59, 
ELResolver.setValue(ELContext, Object, Object, Object)60, 
ELResolver.isReadOnly(ELContext, Object, Object)59 or 
ELResolver.getType(ELContext, Object, Object)58 method, depending on which was called 
on the ValueExpression. 

See the notes about comparison, serialization and immutability in the Expression61 javadocs.

Since: JSP 2.1

See Also: ELResolver55, Expression61, ExpressionFactory64
javax.el ValueExpression 95



ValueExpression  javax.el

ValueExpression()
Constructors

ValueExpression()

public ValueExpression()

Methods

getExpectedType()

public abstract java.lang.Class getExpectedType()

Returns the type the result of the expression will be coerced to after evaluation.

Returns: the expectedType passed to the ExpressionFactory.createValueExpression 
method that created this ValueExpression.

getType(ELContext)

public abstract java.lang.Class getType(javax.el.ELContext46 context)

Evaluates the expression relative to the provided context, and returns the most general type that is 
acceptable for an object to be passed as the value parameter in a future call to the 
setValue(ELContext, Object)98 method. 

Member Summary

Constructors
ValueExpression()96

Methods
abstract

java.lang.Class
getExpectedType()96

abstract
java.lang.Class

getType(ELContext context)96

abstract
java.lang.Object

getValue(ELContext context)97

abstract boolean isReadOnly(ELContext context)97
abstract void setValue(ELContext context, java.lang.Object value)98

Inherited Member Summary

Methods inherited from class Expression61

equals(Object)62, getExpressionString()62, hashCode()62, isLiteralText()63

Methods inherited from class Object

clone(), finalize(), getClass(), notify(), notifyAll(), toString(), wait(), 
wait(long), wait(long, int)
96 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el ValueExpression

getValue(ELContext)
This is not always the same as getValue().getClass(). For example, in the case of an expression 
that references an array element, the getType method will return the element type of the array, which 
might be a superclass of the type of the actual element that is currently in the specified array element.

Parameters:
context - The context of this evaluation.

Returns: the most general acceptable type; otherwise undefined.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException87 - if one of the property resolutions failed because a specified 
variable or property does not exist or is not readable.

ELException53 - if an exception was thrown while performing property or variable resolution. The 
thrown exception must be included as the cause property of this exception, if available.

getValue(ELContext)

public abstract java.lang.Object getValue(javax.el.ELContext46 context)

Evaluates the expression relative to the provided context, and returns the resulting value. 

The resulting value is automatically coerced to the type returned by getExpectedType(), which was 
provided to the ExpressionFactory when this expression was created.

Parameters:
context - The context of this evaluation.

Returns: The result of the expression evaluation.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException87 - if one of the property resolutions failed because a specified 
variable or property does not exist or is not readable.

ELException53 - if an exception was thrown while performing property or variable resolution. The 
thrown exception must be included as the cause property of this exception, if available.

isReadOnly(ELContext)

public abstract boolean isReadOnly(javax.el.ELContext46 context)

Evaluates the expression relative to the provided context, and returns true if a call to 
setValue(ELContext, Object)98 will always fail.

Parameters:
context - The context of this evaluation.

Returns: true if the expression is read-only or false if not.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException87 - if one of the property resolutions failed because a specified 
variable or property does not exist or is not readable.

ELException53 - if an exception was thrown while performing property or variable resolution. The 
thrown exception must be included as the cause property of this exception, if available. * @throws 
NullPointerException if context is null
javax.el ValueExpression 97



ValueExpression  javax.el

setValue(ELContext, Object)
setValue(ELContext, Object)

public abstract void setValue(javax.el.ELContext46 context, java.lang.Object value)

Evaluates the expression relative to the provided context, and sets the result to the provided value.

Parameters:
context - The context of this evaluation.

value - The new value to be set.

Throws:
java.lang.NullPointerException - if context is null.

PropertyNotFoundException87 - if one of the property resolutions failed because a specified 
variable or property does not exist or is not readable.

PropertyNotWritableException89 - if the final variable or property resolution failed because 
the specified variable or property is not writable.

ELException53 - if an exception was thrown while attempting to set the property or variable. The 
thrown exception must be included as the cause property of this exception, if available.
98 Expression Language Specification (Proposed Final Draft) • August 2005



javax.el VariableMapper

VariableMapper()
javax.el

VariableMapper
Declaration
public abstract class VariableMapper
 
java.lang.Object

|
+--javax.el.VariableMapper

Description
The interface to a map between EL variables and the EL expressions they are associated with.

Since: JSP 2.1

Constructors

VariableMapper()

public VariableMapper()

Methods

resolveVariable(String)

public abstract javax.el.ValueExpression95 resolveVariable(java.lang.String variable)

Member Summary

Constructors
VariableMapper()99

Methods
abstract

ValueExpression
resolveVariable(java.lang.String variable)99

abstract
ValueExpression

setVariable(java.lang.String variable, ValueExpression 
expression)100

Inherited Member Summary

Methods inherited from class Object

clone(), equals(Object), finalize(), getClass(), hashCode(), notify(), notifyAll(), 
toString(), wait(), wait(long), wait(long, int)
javax.el VariableMapper 99



VariableMapper  javax.el

setVariable(String, ValueExpression)
Parameters:
variable - The variable name

Returns: the ValueExpression assigned to the variable, null if there is no previous assignment to this 
variable.

setVariable(String, ValueExpression)

public abstract javax.el.ValueExpression95 setVariable(java.lang.String variable, 

javax.el.ValueExpression95 expression)

Assign a ValueExpression to an EL variable, replacing any previously assignment to the same variable. The 
assignment for the variable is removed if the expression is null.

Parameters:
variable - The variable name

expression - The ValueExpression to be assigned to the variable.

Returns: The previous ValueExpression assigned to this variable, null if there is no previouse assignment 
to this variable.
100 Expression Language Specification (Proposed Final Draft) • August 2005



CHAPTER A

Changes

This appendix lists the changes in the EL specification. This appendix is non-
normative.

A.1 Changes between Public Review and 
Proposed Final Draft
New constructor for derived exception classes

Exception classes that extend ELException (PropertyNotFoundException, 
PropertyNotWritableException, MethodNotFoundException) did not have a 
constructor with both 'message' and 'rootCause' as arguments (as it exists in 
ELException). The constructor has been added to these classes. 

javax.el.ELContext API changes

■ removed the ELContext constructor
protected ELContext(javax.el.ELResolver resolver)

■ added the following abstract method in ELContext
public abstract javax.el.ELResolver getELResolver();

Section 1.8.1 - A {<,>,<=,>=,lt,gt,le,ge} B

■ If the first condition (A==B) is false, simply fall through to the next step (do not 
return false). See See issue 129 at jsp-spec-public.dev.java.net.

javax.el.ResourceBundleELResolver

■ New ELResolver class added to support easy access to localized messages.
101



Generics

■ Since JSP 2.1 requires J2SE 5.0, we’ve modified the APIs that can take 
advantage of generics. These include: 
ExpressionFactory:createValueExpression(), 
ExpressionFactory:createMethodExpression(), 
ExpressionFactory:coerceToType(), ELResolver:getType(), 
ELResolver:getCommonPropertyType(), MethodInfo:MethodInfo(), 
MethodInfo.getReturnType(), MethodInfo:getParamTypes()

A.2 Changes between Early Draft Release 
and Public Review
New concept: EL Variables

The EL now supports the concept of EL Variables to properly support code 
structures such as <c:forEach> where a nested action accesses a deferred expression 
that includes a reference to an iteration variable. 

■ Resulting API changes are:

■ The javax.el package description describes the motivation behind EL 
variables.

■ ElContext has two additional methods to provide access to 
FunctionMapper and VariableMapper.

■ ExpressionFactory creation methods now take an ELContext parameter. 
FunctionMapper has been removed as a parameter to these methods.

■ Added new class VariableMapper

■ At a few locations in the spec, the term "variable" has been replaced with "model 
object" to avoid confusion between model objects and the newly introduced EL 
variables.

■ Added new section “Variables” after section 1.15 to introduce the concept of EL 
Variables.

EL in a nutshell (section 1.1.1)

■ Added a paragraph commenting on the flexibility of the EL, thanks to its 
pluggable API for the resolution of model objects, functions, and variables.

javax.el.ELException

■ ElException now extends RuntimeException instead of Exception.

■ Method getRootCause() has been removed in favor of 
Throwable.getCause().
102 Expression Language Specification • August 2005 (Proposed Final Draft)



javax.el.ExpressionFactory

■ Creation methods now use ELContext instead of FunctionMapper (see EL 
Variables above).

■ Added method coerceToType(). See issue 132 at jsp-spec-public.dev.java.net.

javax.el.MethodExpression

■ invoke() must unwrap an InvocationTargetExceptions before re-throwing 
as an ELException.

Section 1.6 - Operators [] and .

■ PropertyNotFoundException is now thrown instead of 
NullPointerException when this is the last property being resolved and we’re 
dealing with an lvalue that is null.

Section 1.13 - Operator Precedence

■ Clarified the fact that qualified functions with a namespace prefix have 
precedence over the operators.

Faces Action Attribute and MethodExpression

In Faces, the action attribute accepts both a String literal  or a 
MethodExpression. When migrating to JSF 1.2, if the attribute's type is set as 
MethodExpression, an error would be reported if a String literal is specified 
because a String literal cannot evaluate to a valid javax.el.MethodExpression.

To solve this issue, the specification of MethodExpression has been expanded to also 
support String literal-expressions. Changes have been made to:

■ Section 1.2.2

■ ExpressionFactory.createMethodExpression()

■ javax.el.MethodExpression:invoke()
Chapter A Changes 103



104 Expression Language Specification • August 2005 (Proposed Final Draft)


